Employing Cellular Automata for Shaping Accurate Morphology Maps Using Scattered Data from Robotics’ Missions

  • Athanasios Ch. Kapoutsis
  • Savvas A. Chatzichristofis
  • Georgios Ch. Sirakoulis
  • Lefteris Doitsidis
  • Elias B. Kosmatopoulos
Part of the Emergence, Complexity and Computation book series (ECC, volume 13)


Accurate maps are essential in the case of robot teams, so that they can operate autonomously and accomplish their tasks efficiently. In this work we present an approach which allows the generation of detailed maps, suitable for robot navigation, from a mesh of sparse points using Cellular Automata and simple evolutions rules. The entire map area can be considered as a 2D Cellular Automaton (CA) where the value at each CA cell represents the height of the ground in the corresponding coordinates. The set of measurements form the original state of the CA. The CA rules are responsible for generating the intermediate heights among the real measurements. The proposed method can automatically adjust its rules, so as to encapture local morphological attributes, using a pre-processing procedure in the set of measurements. The main advantage of the proposed approach is the ability to maintain an accurately reconstruction even in cases where the number of measurements are significant reduced. Experiments have been conducted employing data collected from two totally different real-word environments. In the first case the proposed approach is applied, so as to build a detailed map of a large unknown underwater area in Oporto, Portugal. The second case concerns data collected by a team of aerial robots in real experiments in an area near Zurich, Switzerland and is also used for the evaluation of the approach. The data collected, in the two aforementioned cases, are extracted using different kind of sensors and robots, thus demonstrating the applicability of our approach in different kind of devices. The proposed method outperforms the performance of other well-known methods in literature thus enabling its application for real robot navigation.


Cellular Automaton Interpolation Method Near Neighbor Autonomous Underwater Vehicle Evolution Rule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Gasca, M., Sauer, T.: Polynomial interpolation in several variables. Adv. Comput. Math. 12(4), 377–410 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Lehmann, T.M., Gonner, C., Spitzer, K.: Survey: Interpolation methods in medical image processing. Med. Imaging IEEE Trans. 18(11), 1049–1075 (1999)Google Scholar
  3. 3.
    Franke, R., Nielson, G.M.: Scattered data interpolation and applications: a tutorial and survey. In: Geometric Modeling, pp. 131–160. Springer, Berlin (1991)Google Scholar
  4. 4.
    Thorsten, L., Michael, H., Wuensche, H.-J.: Autonomous ground vehicles concepts and a path to the future. Proc. IEEE 100(13), 1831–1839 (2012)Google Scholar
  5. 5.
    Achtelik, M., Achtelik, M., Brunet, Y., Chli, M., Chatzichristofis, S.A.., Decotignie, J-D., Doth, K-M., Fraundorfer, F., Kneip, L., Gurdan, D., Heng, L., Kosmatopoulos, E.B., Doitsidis, L., Lee, G.H., Lynen, S., Martinelli, A., Meier, L., Pollefeys, M., Piguet, D., Renzaglia, A., Scaramuzza, D., Siegwart, R., Stumpf, J., Tanskanen, P., Troiani, C., Weiss. S.: Sfly: swarm of micro flying robots. In: IROS, pp. 2649–2650. IEEE (2012)Google Scholar
  6. 6.
    Birk, A., Pfingsthorn, M., Bülow, H.: Advances in underwater mapping and their application potential for safety, security, and rescue robotics. In: IEEE International Symposium on Safety, Security, Rescue Robotics (SSRR). IEEE Press (2012)Google Scholar
  7. 7.
    Michael, N., Shaojie, S., Mohta, K., Mulgaonkar, Y., Kumar, V., Nagatani, K., Okada, Y., Kiribayashi, S., Otake, K., Yoshida, K., Ohno, K., Takeuchi, E., Tadokoro, S.: Collaborative mapping of an earthquake-damaged building via ground and aerial robots. J. Field Robot. 29(5), 832–841 (2012)CrossRefGoogle Scholar
  8. 8.
    Blosch, M., Weiss, S., Scaramuzza, D., Siegwart, R.: Vision based MAV navigation in unknown and unstructured environments. In: IEEE International Conference on Robotics and Automation (ICRA), 2010, pp. 21–28. IEEE (2010)Google Scholar
  9. 9.
    Fraundorfer, F., Heng, L., Honegger, D., Lee, G.H., Meier, L., Tanskanen, P., Pollefeys, M.: Vision-based autonomous mapping and exploration using a quadrotor mav. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2012, pp. 4557–4564. IEEE (2012)Google Scholar
  10. 10.
    Majdik, A., Albers-Schoenberg, Y., Scaramuzza, D.: MAV urban localization from google street view data. In: IROS, pp. 3979–3986 (2013)Google Scholar
  11. 11.
    Doitsidis, L., Weiss, S., Renzaglia, A., Achtelik, M.W., Kosmatopoulos, E.B., Siegwart, R., Scaramuzza, D.: Optimal surveillance coverage for teams of micro aerial vehicles in GPS-denied environments using onboard vision. Auton. Robots 33(1–2), 173–178 (2012)CrossRefGoogle Scholar
  12. 12.
    Akyildiz, I.F., Pompili, D., Melodia, T.: Underwater acoustic sensor networks: research challenges. Adhoc Netw. 3(3), 257–279 (2005)Google Scholar
  13. 13.
    Kapoutsis, A.Ch., Chatzichristofis, S.A., Doitsidis, L., Borges de Sousa, J., Kosmatopoulos, E.B.: Autonomous navigation of teams of unmanned aerial or underwater vehicles for exploration of unknown static & dynamic environments. In: 21st Mediterranean Conference on Control & Automation (MED), 2013, pp. 1181–1188. IEEE (2013)Google Scholar
  14. 14.
    Bohling, G.: Introduction to Geostatistics and Variogram Analysis, p. 20. Kansas Geological Survey, Kansas (2005)Google Scholar
  15. 15.
    Ripley, B.D.: Spatial Statistics, vol. 575., New York (2005)Google Scholar
  16. 16.
    Webster, R., Oliver, M.A.: Geostatistics for Environmental Scientists. Wiley, Chichester (2007)Google Scholar
  17. 17.
    Christopher, C.M., Condal, A.R.: A spatial data structure integrating GIS and simulation in a marine environment. Mar. Geodesy 18(3), 213–228 (1995)CrossRefGoogle Scholar
  18. 18.
    Burrough, P.A.: Principles of Geographical Information Systems for Land Resources Assessment (1986)Google Scholar
  19. 19.
    Charalampous, K., Amanatiadis, A., Gasteratos, A.: Efficient robot path planning in the presence of dynamically expanding obstacles. In: ACRI, volume 7495 of Lecture Notes in Computer Science, pp. 330–339. Springer (2012)Google Scholar
  20. 20.
    Ioannidis, K., Sirakoulis, GCh., Andreadis, I.: Cellular automata-based architecture for cooperative miniature robots. J. Cell. Autom. 8(1–2), 91–111 (2013)MathSciNetGoogle Scholar
  21. 21.
    Chatzichristofis, S.A., Mitzias, D.A., Sirakoulis, GCh., Boutalis, Y.S.: A novel cellular automata based technique for visual multimedia content encryption. Opt. Commun. 283(21), 4250–4260 (2010)CrossRefGoogle Scholar
  22. 22.
    Zagoris, K., Pratikakis, I.: Scene text detection on images using cellular automata. In: ACRI, pp. 514–523 (2012)Google Scholar
  23. 23.
    Georgoudas, I.G., Sirakoulis, GCh., Scordilis, E.M., Andreadis, I.: A cellular automaton simulation tool for modelling seismicity in the region of Xanthi. Environ. Modell. Softw. 22(10), 1455–1464 (2007)CrossRefGoogle Scholar
  24. 24.
    Von Neumann, J., Burks, A.W., et al.: Theory of Self-Reproducing Automata. University of Illinois Press, Urbana (1966)Google Scholar
  25. 25.
    Chopard, B., Droz, M.: Cellular Automata Modeling of Physical Systems. Cambridge University Press, New York (1998)Google Scholar
  26. 26.
    Toffoli, T.: Cellular automata as an alternative to (rather than an approximation of) differential equations in modeling physics. Phys. D Nonlinear Phenom. 10(1–2), 117–127 (1984)Google Scholar
  27. 27.
    Bialynicki-Birula, I.: Weyl, Dirac, and Maxwell equations on a lattice as unitary cellular automata. Phys. Rev. D 49(12), 6920–6927 (1994)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Omohundro, S.: Modelling cellular automata with partial differential equations. Phys. D Nonlinear Phenom. 10(1–2), 128–134 (1984)Google Scholar
  29. 29.
    Malamud, B.D., Turcotte, D.L.: Cellular-automata models applied to natural hazards. Comput. Sci. Eng. 2(3), 42–51 (2000)CrossRefGoogle Scholar
  30. 30.
    Sirakoulis, GCh., Karafyllidis, I., Mardiris, V., Thanailakis, A.: Study of lithography profiles developed on non-planar Si surfaces. Nanotechnology 10, 421–427 (1999)CrossRefGoogle Scholar
  31. 31.
    Sirakoulis, GCh., Karafyllidis, I., Thanailakis, A.: A cellular automaton model for the effects of population movement and vaccination on epidemic propagation. Ecol. Modell. 133(3), 209–223 (2000)CrossRefGoogle Scholar
  32. 32.
    Sirakoulis, GCh., Karafyllidis, I., Thanailakis, A., Mardiris, V.: A methodology for VLSI implementation of cellular automata algorithms using VHDL. Adv. Eng. Softw. 32(3), 189–202 (2000)CrossRefGoogle Scholar
  33. 33.
    Sirakoulis, GCh., Karafyllidis, I., Thanailakis, A.: A CAD system for the construction and VLSI implementation of cellular automata algorithms using VHDL. Microprocess. Microsyst. 27(8), 381–396 (2003)CrossRefGoogle Scholar
  34. 34.
    Sirakoulis, GCh.: A TCAD system for VLSI implementation of the CVD process using VHDL. Integr. VLSI J. 37(1), 63–81 (2004)CrossRefGoogle Scholar
  35. 35.
    Mardiris, V., Sirakoulis, GCh., Mizas, Ch., Karafyllidis, I., Thanailakis, A.: A CAD system for modeling and simualtion of computer networks using cellular automata. IEEE Trans. SMC-Part C 38(2), 1–12 (2008)Google Scholar
  36. 36.
    Glynn, J., de Moustier, C., Huff, L.: Survey operations and results using a Klein 5410 bathymetric sidescan sonar. In: US Hydro (2007)Google Scholar
  37. 37.
    Weiss, S., Achtelik, M., Kneip, L., Scaramuzza, D., Siegwart, R.: Intuitive 3D maps for MAV terrain exploration and obstacle avoidance. J. Intell. Robot. Syst. 61(1–4), 473–493 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Athanasios Ch. Kapoutsis
    • 1
    • 2
  • Savvas A. Chatzichristofis
    • 1
    • 2
  • Georgios Ch. Sirakoulis
    • 1
    • 2
  • Lefteris Doitsidis
    • 2
    • 3
  • Elias B. Kosmatopoulos
    • 1
    • 2
  1. 1.Department of Electrical and Computer EngineeringDemocritus University of ThraceXanthiGreece
  2. 2.Telematics Institute, Center for Research and TechnologyHellas (ITI-CERTH)ThessalonikiGreece
  3. 3.Department of Electronic EngineeringTechnological Educational Institute of CreteChaniaGreece

Personalised recommendations