Graph-Based, Supervised Machine Learning Approach to (Irregular) Polysemy in WordNet

  • Bastian Entrup
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8686)

Abstract

This paper presents a supervised machine learning approach that aims at annotating those homograph word forms in WordNet that share some common meaning and can hence be thought of as belonging to a polysemous word. Using different graph-based measures, a set of features is selected, and a random forest model is trained and evaluated. The results are compared to other features used for polysemy identification in WordNet. The features proposed in this paper not only outperform the commonly used CoreLex resource, but they also work on different parts of speech and can be used to identify both regular and irregular polysemous word forms in WordNet.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Apresjan, J.U.D.: Regular Polysemy. Linguistics 12, 5–32 (1974)CrossRefGoogle Scholar
  2. 2.
    Boleda, G., Padó, S., Utt, J.: Regular polysemy: A distributional model. In: Proceedings of the First Joint Conference on Lexical and Computational Semantics – vol. 1: Proceedings of the Main Conference and the Shared Task, and vol. 2: Proceedings of the Sixth International Workshop on Semantic Evaluation, SemEval 2012, vol. 1, pp. 151–160. Association for Computational Linguistics, Stroudsburg (2012)Google Scholar
  3. 3.
    Bonacich, P.: Power and Centrality: A family of Measures. The American Journal of Sociology 92(5), 1170–1182 (1987)CrossRefGoogle Scholar
  4. 4.
    Breiman, L.: Random forests. Machine Learning 45, 5–32 (2001)CrossRefMATHGoogle Scholar
  5. 5.
    Buitelaar, P.: Corelex: An ontology of systematic polysemous classes. In: Proceedings of the 1st International Conference on Formal Ontology in Information Systems (FOIS 1998), June 6-8. Frontiers in Artificial Intelligence and Applications, vol. 46, pp. 221–235. IOS Press, Trento (1998)Google Scholar
  6. 6.
    Freeman, L.C.: Centrality in Social Networks Conceptual Clarification. Social Networks 1(1978), 215–239 (1978)CrossRefGoogle Scholar
  7. 7.
    Hirst, G., St-Onge, D.: Lexical chains as representations of context for the detection and correction of malapropisms. In: Fellbaum, C. (ed.) WordNet: An Electronic Lexical Database, pp. 305–332. MIT Press (1998)Google Scholar
  8. 8.
    Jiang, J.J., Conrath, D.W.: Semantic similarity based on corpus statistics and lexical taxonomy. CoRR cmp-lg/9709008 (1997)Google Scholar
  9. 9.
    Leacock, C., Miller, G.A., Chodorow, M.: Using corpus statistics and wordnet relations for sense identification. Comput. Linguist. 24(1), 147–165 (1998)Google Scholar
  10. 10.
    Lin, D.: An information-theoretic definition of similarity. In: Shavlik, J.W. (ed.) Proceedings of the 15th International Conference on Machine Learning (ICML 1998), Madison, WI, USA, July 24-27, pp. 296–304. Morgan-Kaufman Publishers, San Francisco (1998)Google Scholar
  11. 11.
    Miller, G.A.: WordNet: A lexical database for english. Commun. ACM 38(11), 39–41 (1995)CrossRefGoogle Scholar
  12. 12.
    Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking: Bringing order to the web. In: Proceedings of the 7th International World Wide Web Conference, Brisbane, Australia, pp. 161–172 (1998)Google Scholar
  13. 13.
    Pedersen, T., Patwardhan, S., Michelizzi, J.: Wordnet: Similarity – measuring the relatedness of concepts. In: McGuinness, D.L., Ferguson, G. (eds.) AAAI, pp. 1024–1025. AAAI Press / The MIT Press (2004)Google Scholar
  14. 14.
    Resnik, P., Yarowsky, D.: Distinguishing systems and distinguishing senses: new evaluation methods for word sense disambiguation. Natural Language Engineering 5(2), 113–133 (1999)CrossRefGoogle Scholar
  15. 15.
    Snow, R., Prakash, S., Jurafsky, D., Ng, A.Y.: Learning to merge word senses. In: Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, June 28-30, pp. 1005–1014. ACL (2007)Google Scholar
  16. 16.
    Utt, J., Padó, S.: Ontology-based distinction between polysemy and homonymy. In: Proceedings of the Ninth International Conference on Computational Semantics, IWCS 2011, pp. 265–274. Association for Computational Linguistics, Stroudsburg (2011)Google Scholar
  17. 17.
    Veale, T.: Polysemy and category structure in wordnet: An evidential approach. In: Proceedings of the Fourth International Conference on Language Resources and Evaluation, LREC 2004. European Language Resources Association (2004)Google Scholar
  18. 18.
    Wu, Z., Palmer, M.: Verbs semantics and lexical selection. In: Proceedings of the 32nd Annual Meeting on Association for Computational Linguistics, ACL 1994, pp. 133–138. Association for Computational Linguistics, Stroudsburg (1994)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Bastian Entrup
    • 1
  1. 1.Applied and Computational LinguisticsJustus-Liebig Universität GießenGermany

Personalised recommendations