Advertisement

A Behavioral Congruence for Concurrent Constraint Programming with Nondeterministic Choice

  • Luis F. Pino
  • Filippo Bonchi
  • Frank D. Valencia
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8687)

Abstract

Concurrent constraint programming (ccp) is a well-established model of concurrency for reasoning about systems of multiple agents that interact with each other by posting and querying partial information on a shared space. (Weak) bisimilarity is one of the most representative notions of behavioral equivalence for models of concurrency. A notion of weak bisimilarity, called weak saturated bisimilarity (\(\dot{\approx}_{sb}\)), was recently proposed for ccp. This equivalence improves on previous bisimilarity notions for ccp that were too discriminating and it is a congruence for the choice-free fragment of ccp. In this paper, however, we show that \(\dot{\approx}_{sb}\) is not a congruence for ccp with nondeterministic choice. We then introduce a new notion of bisimilarity, called weak full bisimilarity (≈  f ), and show that it is a congruence for the full language of ccp. We also show the adequacy of ≈  f by establishing that it coincides with the congruence induced by closing \(\dot{\approx}_{sb}\) under all contexts. The advantage of the new definition is that, unlike the congruence induced by \(\dot{\approx}_{sb}\), it does not require quantifying over infinitely many contexts.

Keywords

Constraint System Process Context Label Semantic Nondeterministic Choice Cylindric Algebra 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arbab, F., Rutten, J.J.M.M.: A coinductive calculus of component connectors. In: WADT, pp. 34–55 (2002)Google Scholar
  2. 2.
    Aristizábal, A., Bonchi, F., Palamidessi, C., Pino, L., Valencia, F.: Deriving labels and bisimilarity for concurrent constraint programming. In: Hofmann, M. (ed.) FOSSACS 2011. LNCS, vol. 6604, pp. 138–152. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  3. 3.
    Aristizábal, A., Bonchi, F., Pino, L., Valencia, F.D.: Partition refinement for bisimilarity in CCP. In: Ossowski, S., Lecca, P. (eds.) 27th Annual ACM Symposium on Applied Computing (SAC 2012), pp. 88–93. ACM (2012)Google Scholar
  4. 4.
    Bartoletti, M., Zunino, R.: A calculus of contracting processes. In: 25th Annual IEEE Symposium on Logic in Computer Science (LICS 2010), pp. 332–341. IEEE Computer Society (2010)Google Scholar
  5. 5.
    Bengtson, J., Johansson, M., Parrow, J., Victor, B.: Psi-calculi: Mobile processes, nominal data, and logic. In: 24th Annual IEEE Symposium on Logic in Computer Science (LICS 2009), pp. 39–48. IEEE Computer Society (2009)Google Scholar
  6. 6.
    Bonchi, F., Gadducci, F., Monreale, G.V.: Reactive systems, barbed semantics, and the mobile ambients. In: de Alfaro, L. (ed.) FOSSACS 2009. LNCS, vol. 5504, pp. 272–287. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  7. 7.
    Bonchi, F., Gadducci, F., Monreale, G.V.: Towards a general theory of barbs, contexts and labels. In: Yang, H. (ed.) APLAS 2011. LNCS, vol. 7078, pp. 289–304. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  8. 8.
    Bonchi, F., König, B., Montanari, U.: Saturated semantics for reactive systems. In: 21th IEEE Symposium on Logic in Computer Science (LICS 2006), pp. 69–80. IEEE Computer Society (2006)Google Scholar
  9. 9.
    Buscemi, M.G., Montanari, U.: Open bisimulation for the concurrent constraint pi-calculus. In: Drossopoulou, S. (ed.) ESOP 2008. LNCS, vol. 4960, pp. 254–268. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    de Boer, F.S., Pierro, A.D., Palamidessi, C.: Nondeterminism and infinite computations in constraint programming. Theoretical Computer Science 151(1), 37–78 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    De Nicola, R.: Behavioral equivalences. In: Encyclopedia of Parallel Computing, pp. 120–127 (2011)Google Scholar
  12. 12.
    Falaschi, M., Gabbrielli, M., Marriott, K., Palamidessi, C.: Confluence in concurrent constraint programming. Theoretical Computer Science 183(2), 281–315 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Fokkink, W., Pang, J., Wijs, A.: Is timed branching bisimilarity a congruence indeed? Fundam. Inform. 87(3-4), 287–311 (2008)MathSciNetGoogle Scholar
  14. 14.
    Knight, S., Palamidessi, C., Panangaden, P., Valencia, F.D.: Spatial and epistemic modalities in constraint-based process calculi. In: Koutny, M., Ulidowski, I. (eds.) CONCUR 2012. LNCS, vol. 7454, pp. 317–332. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  15. 15.
    Leifer, J.J., Milner, R.: Deriving bisimulation congruences for reactive systems. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 243–258. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  16. 16.
    Mendler, N.P., Panangaden, P., Scott, P.J., Seely, R.A.G.: A logical view of concurrent constraint programming. Nordic Journal of Computing 2(2), 181–220 (1995)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Milner, R.: A Calculus of Communication Systems. LNCS, vol. 92. Springer, Heidelberg (1980)CrossRefGoogle Scholar
  18. 18.
    Milner, R.: Communicating and mobile systems: the π-calculus. Cambridge University Press (1999)Google Scholar
  19. 19.
    Milner, R., Sangiorgi, D.: Barbed bisimulation. In: Kuich, W. (ed.) ICALP 1992. LNCS, vol. 623, pp. 685–695. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  20. 20.
    Monk, J., Henkin, L., Tarski, A.: Cylindric Algebras (Part I). North-Holland (1971)Google Scholar
  21. 21.
    Palamidessi, C., Saraswat, V.A., Valencia, F.D., Victor, B.: On the expressiveness of linearity vs persistence in the asychronous pi-calculus. In: 21th IEEE Symposium on Logic in Computer Science (LICS 2006), pp. 59–68. IEEE Computer Society (2006)Google Scholar
  22. 22.
    Pino, L.F., Bonchi, F., Valencia, F.D.: A behavioral congruence for concurrent constraint programming with nondeterministic choice (extended version). Technical report, INRIA/DGA and LIX, École Polytechnique, France (2013), http://www.lix.polytechnique.fr/~luis.pino/files/ictac14-extended.pdf
  23. 23.
    Pino, L.F., Bonchi, F., Valencia, F.D.: Efficient computation of program equivalence for confluent concurrent constraint programming. In: Peña, R., Schrijvers, T. (eds.) 15th International Symposium on Principles and Practice of Declarative Programming (PPDP 2013), pp. 263–274. ACM (2013)Google Scholar
  24. 24.
    Sangiorgi, D., Walker, D.: The π-Calculus - a theory of mobile processes. Cambridge University Press (2001)Google Scholar
  25. 25.
    Saraswat, V.A., Rinard, M.C.: Concurrent constraint programming. In: Allen, F.E. (ed.) 17th Annual ACM Symposium on Principles of Programming Languages (POPL 1991), pp. 232–245. ACM Press (1990)Google Scholar
  26. 26.
    Saraswat, V.A., Rinard, M.C., Panangaden, P.: Semantic foundations of concurrent constraint programming. In: Wise, D.S. (ed.) 18th Annual ACM Symposium on Principles of Programming Languages (POPL 1991), pp. 333–352. ACM Press (1991)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Luis F. Pino
    • 1
  • Filippo Bonchi
    • 2
  • Frank D. Valencia
    • 1
  1. 1.Comète, LIX, Laboratoire de l’École Polytechnique associé à l’INRIAFrance
  2. 2.CNRS - Laboratoire de l’Informatique du Parallélisme, ENS LyonFrance

Personalised recommendations