Advertisement

On Unary Fragments of MTL and TPTL over Timed Words

  • Khushraj Madnani
  • Shankara Narayanan Krishna
  • Paritosh K. Pandya
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8687)

Abstract

Real time logics such as Metric Temporal Logic, MTL and Timed Propositional Temporal Logic (TPTL) exhibit considerable diversity in expressiveness and decidability properties based on the permitted set of modalities, the nature of time interval constraints and restriction on models. We study the expressiveness and decidability properties of various unary fragments of MTL incorporating strict as well as non-strict modalities. We show that, from the point of view of expressive power, MTL[\(\Diamond_I\)] \(\subsetneq\) MTL \([\Diamond^s_I] \subsetneq\) MTL \([\Diamond_I,\bigcirc] \equiv\) MTL \([\Diamond^s_I,\bigcirc] \subsetneq\) MTL \([\mathsf{U}^s_I]\), in pointwise semantics. We also sharpen the decidability results by showing that, in the pointwise semantics, MTL \([\Diamond_I]\) (which is the least expressive amongst the unary fragments considered) already has non-primitive-recursive complexity and is \({\bf F}_{\omega^\omega}\)-hard for satisfiability checking over finite timed words, and that MTL [\(\Diamond_I\), Open image in new window I ] is undecidable and \(\Sigma_1^0\)-hard. Next we explore, in the pointwise models, the decidability of TPTL \([\Diamond_I]\) (unary TPTL) and show that 2-variables unary TPTL has undecidable satisfiability, while the single variable fragment TPTL[U s ] incorporating even the most expressive operator U s operator is decidable over finite timed words. We provide a comprehensive picture of the decidability and expressiveness properties of unary fragments of TPTL and MTL over pointwise time.

Keywords

Temporal Logic Time Stamp Strict Monotonicity Reachability Problem Unary Fragment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alur, R., Henzinger, T.A.: Logics and Models of Real Time: A Survey. In: Proceedings of REX Workshop, pp. 74–106 (1991)Google Scholar
  2. 2.
    Alur, R., Feder, T., Henzinger, T.A.: The Benefits of Relaxing Punctuality. Journal of the ACM 43(1), 116–146 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Ouaknine, J., Worrell, J.B.: Some Recent Results in Metric Temporal Logic. In: Cassez, F., Jard, C. (eds.) FORMATS 2008. LNCS, vol. 5215, pp. 1–13. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Bouyer, P., Chevalier, F., Markey, N.: On the expressiveness of TPTL and MTL. In: Sarukkai, S., Sen, S. (eds.) FSTTCS 2005. LNCS, vol. 3821, pp. 432–443. Springer, Heidelberg (2005)Google Scholar
  5. 5.
    D’Souza, D., Prabhakar, P.: On the expressiveness of MTL in the pointwise and continuous semantics. Technical Report IISc, India (2005)Google Scholar
  6. 6.
    D’Souza, D., Raj Mohan, M., Prabhakar, P.: Eliminating past operators in Metric Temporal Logic. In: Perspectives in Concurrency, pp. 86–106 (2008)Google Scholar
  7. 7.
    Demri, S., Lazic, R.: LTL with freeze quantifier and register automata. In: LICS 2006, pp. 17–26 (2006)Google Scholar
  8. 8.
    Etessami, K., Wilke, T.: An Until Hierarchy for Temporal Logic. In: Proceedings of LICS 1996, pp. 108–117 (1996)Google Scholar
  9. 9.
    Henzinger, T.A.: The Temporal Specification and Verification of Real-time Systems. Ph.D Thesis, Stanford University (1991)Google Scholar
  10. 10.
    Hirshfeld, Y., Rabinovich, A.: Logics for Real Time: Decidability and Complexity. Fundam. Inform. 62(1), 1–28 (2004)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Kini, D.R., Krishna, S.N., Pandya, P.K.: On Construction of Safety Signal Automata for MITL[UI, SI] using Temporal Projections. In: Fahrenberg, U., Tripakis, S. (eds.) FORMATS 2011. LNCS, vol. 6919, pp. 225–239. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  12. 12.
    Koymans, R.: Specifying Real-Time Properties with Metric Temporal Logic. Real Time Systems 2(4), 255–299 (1990)CrossRefGoogle Scholar
  13. 13.
    Maler, O., Nickovic, D., Pnueli, A.: Real Time Temporal Logic: Past, Present, Future. In: Pettersson, P., Yi, W. (eds.) FORMATS 2005. LNCS, vol. 3829, pp. 2–16. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  14. 14.
    Minsky, M.: Finite and infinite machines. Prentice Hall, New Jersey (1967)zbMATHGoogle Scholar
  15. 15.
    Ouaknine, J., Worrell, J.: On the Decidability of Metric Temporal Logic. In: Proceedings of LICS 2005, pp. 188–197 (2005)Google Scholar
  16. 16.
    Ouaknine, J., Worrell, J.B.: On Metric Temporal Logic and Faulty Turing Machines. In: Aceto, L., Ingólfsdóttir, A. (eds.) FOSSACS 2006. LNCS, vol. 3921, pp. 217–230. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  17. 17.
    Pandya, P.K., Shah, S.: On Expressive Powers of Timed Logics: Comparing Boundedness, Non-punctuality, and Deterministic Freezing. In: Katoen, J.-P., König, B. (eds.) CONCUR 2011. LNCS, vol. 6901, pp. 60–75. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  18. 18.
    Pandya, P.K., Shah, S.: The Unary Fragments of Metric Interval Temporal Logic: Bounded versus Lower Bound Constraints. In: Chakraborty, S., Mukund, M. (eds.) ATVA 2012. LNCS, vol. 7561, pp. 77–91. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  19. 19.
    Prabhakar, P., D’Souza, D.: On the Expressiveness of MTL with Past Operators. In: Asarin, E., Bouyer, P. (eds.) FORMATS 2006. LNCS, vol. 4202, pp. 322–336. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  20. 20.
    Chambart, P., Schnobelen, P.: The ordinal recursive complexity of lossy channel systems. In: Proceedings of LICS, pp. 205–216 (2008)Google Scholar
  21. 21.
    Schnobelen, P.: Verifying lossy channel systems has nonprimitive recursive complexity. Info. Proc. Lett. 83(5), 251–261 (2002)CrossRefGoogle Scholar
  22. 22.
    Straubing, H.: Finite Automata, Formal Logic and Circuit Complexity. Birkhauser, Boston (1994)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Khushraj Madnani
    • 1
  • Shankara Narayanan Krishna
    • 1
  • Paritosh K. Pandya
    • 2
  1. 1.IIT BombayMumbaiIndia
  2. 2.Tata Institute of Fundamental ResearchMumbaiIndia

Personalised recommendations