Advertisement

From Universal Logic to Computer Science, and Back

  • Răzvan Diaconescu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8687)

Abstract

Computer Science has been long viewed as a consumer of mathematics in general, and of logic in particular, with few and minor contributions back. In this article we are challenging this view with the case of the relationship between specification theory and the universal trend in logic.

Keywords

Category Theory Institution Theory Logical System Logical Language Partial Algebra 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andréka, H., Németi, I.: Łoś lemma holds in every category. Studia Scientiarum Mathematicarum Hungarica 13, 361–376 (1978)Google Scholar
  2. 2.
    Andréka, H., Németi, I.: A general axiomatizability theorem formulated in terms of cone-injective subcategories. In: Csakany, B., Fried, E., Schmidt, E.T. (eds.) Universal Algebra, pp. 13–35. North-Holland (1981); Colloquia Mathematics Societas János Bolyai, 29Google Scholar
  3. 3.
    Andréka, H., Németi, I.: Generalization of the concept of variety and quasivariety to partial algebras through category theory. Dissertationes Mathematicae, vol. 204. Państwowe Wydawnictwo Naukowe (1983)Google Scholar
  4. 4.
    Barwise, J.: Axioms for abstract model theory. Annals of Mathematical Logic 7, 221–265 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Barwise, J., Feferman, S.: Model-Theoretic Logics. Springer (1985)Google Scholar
  6. 6.
    Bergstra, J., Heering, J., Klint, P.: Module algebra. Journal of the Association for Computing Machinery 37(2), 335–372 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Beth, E.W.: On Padoa’s method in the theory of definition. Indagationes Mathematicæ 15, 330–339 (1953)MathSciNetGoogle Scholar
  8. 8.
    Béziau, J.-Y.: 13 questions about universal logic. Bulletin of the Section of Logic 35(2/3), 133–150 (2006)zbMATHGoogle Scholar
  9. 9.
    Béziau, J.-Y. (ed.): Universal Logic: an Anthology. Studies in Universal Logic. Springer Basel (2012)Google Scholar
  10. 10.
    Bidoit, M., Hennicker, R., Wirsing, M.: Behavioural and abstractor specifications. Sci. Comput. Program. 25(2-3), 149–186 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Borzyszkowski, T.: Generalized interpolation in CASL. Information Processing Letters 76, 19–24 (2001)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Borzyszkowski, T.: Logical systems for structured specifications. Theoretical Computer Science 286(2), 197–245 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Borzyszkowski, T.: Generalized interpolation in first-order logic. Fundamenta Informaticæ 66(3), 199–219 (2005)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Burstall, R., Goguen, J.: The semantics of Clear, a specification language. In: Bjorner, D. (ed.) Abstract Software Specifications. LNCS, vol. 86, pp. 292–332. Springer, Heidelberg (1980)CrossRefGoogle Scholar
  15. 15.
    Chang, C.-C., Keisler, H.J.: Model Theory. North Holland, Amsterdam (1990)zbMATHGoogle Scholar
  16. 16.
    Craig, W.: Three uses of the Herbrand-Gentzen theorem in relating model theory and proof theory. Journal of Symbolic Logic 22, 269–285 (1957)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Diaconescu, R.: Category-based semantics for equational and constraint logic programming. DPhil thesis, University of Oxford (1994)Google Scholar
  18. 18.
    Diaconescu, R.: Grothendieck institutions. Applied Categorical Structures 10(4), 383–402 (2002); Preliminary version appeared as IMAR Preprint 2-2000, ISSN 250-3638 (February 2000)Google Scholar
  19. 19.
    Diaconescu, R.: Institution-independent ultraproducts. Fundamenta Informaticæ 55(3-4), 321–348 (2003)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Diaconescu, R.: An institution-independent proof of Craig Interpolation Theorem. Studia Logica 77(1), 59–79 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Diaconescu, R.: Interpolation in Grothendieck institutions. Theoretical Computer Science 311, 439–461 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Diaconescu, R.: Institution-independent Model Theory. Birkhäuser (2008)Google Scholar
  23. 23.
    Diaconescu, R.: Quasi-boolean encodings and conditionals in algebraic specification. Journal of Logic and Algebraic Programming 79(2), 174–188 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Diaconescu, R.: An axiomatic approach to structuring specifications. Theoretical Computer Science 433, 20–42 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Diaconescu, R.: Borrowing interpolation. Journal of Logic and Computation 22(3), 561–586 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Diaconescu, R.: Three decades of institution theory. In: Béziau, J.-Y. (ed.) Universal Logic: an Anthology, pp. 309–322. Springer Basel (2012)Google Scholar
  27. 27.
    Diaconescu, R.: Quasi-varieties and initial semantics in hybridized institutions. Journal of Logic and Computation, doi:10.1093/logcom/ext016Google Scholar
  28. 28.
    Diaconescu, R., Futatsugi, K.: CafeOBJ Report: The Language, Proof Techniques, and Methodologies for Object-Oriented Algebraic Specification. AMAST Series in Computing, vol. 6. World Scientific (1998)Google Scholar
  29. 29.
    Diaconescu, R., Futatsugi, K.: Behavioural coherence in object-oriented algebraic specification. Universal Computer Science 6(1), 74–96 (1998); First version appeared as JAIST Technical Report IS-RR-98-0017F (June 1998)Google Scholar
  30. 30.
    Diaconescu, R., Goguen, J., Stefaneas, P.: Logical support for modularisation. In: Huet, G., Plotkin, G. (eds.) Logical Environments, Cambridge, pp. 83–130 (1993); Proceedings of a Workshop held in Edinburgh, Scotland (May 1991)Google Scholar
  31. 31.
    Diaconescu, R., Madeira, A.: Encoding hybridized institutions into first order logic. Mathematical Structures in Computer Science (to appear)Google Scholar
  32. 32.
    Diaconescu, R., Petria, M.: Saturated models in institutions. Archive for Mathematical Logic 49(6), 693–723 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Dimitrakos, T., Maibaum, T.: On a generalized modularization theorem. Information Processing Letters 74, 65–71 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Ehresmann, C.: Catégories et strcutures, Dunod Paris (1965)Google Scholar
  35. 35.
    Ehresmann, C.: Esquisses et types des structures algébriques. Buletinul Institutului Politehnic Iaşi 14(18), 1–14 (1968)MathSciNetGoogle Scholar
  36. 36.
    Gabbay, D.M., Maksimova, L.: Interpolation and Definability: modal and intuitionistic logics. Oxford University Press (2005)Google Scholar
  37. 37.
    Goguen, J.: A categorical manifesto. Mathematical Structures in Computer Science 1(1), 49–67 (1991); Also, Programming Research Group Technical Monograph PRG–72, Oxford University (March 1989)Google Scholar
  38. 38.
    Goguen, J.: Types as theories. In: Reed, G.M., Roscoe, A.W., Wachter, R.F. (eds.) Topology and Category Theory in Computer Science, Oxford, pp. 357–390 (1991); Proceedings of a Conference held at Oxford (June 1989)Google Scholar
  39. 39.
    Goguen, J., Burstall, R.: Introducing institutions. In: Clarke, E., Kozen, D. (eds.) Logic of Programs 1983. LNCS, vol. 164, pp. 221–256. Springer, Heidelberg (1984)CrossRefGoogle Scholar
  40. 40.
    Goguen, J., Burstall, R.: Institutions: Abstract model theory for specification and programming. Journal of the Association for Computing Machinery 39(1), 95–146 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Goguen, J., Diaconescu, R.: Towards an algebraic semantics for the object paradigm. In: Ehrig, H., Orejas, F. (eds.) Abstract Data Types 1992 and COMPASS 1992. LNCS, vol. 785, pp. 1–34. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  42. 42.
    Goguen, J., Malcolm, G.: A hidden agenda. Theoretical Computer Science 245(1), 55–101 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Găină, D., Popescu, A.: An institution-independent proof of Robinson consistency theorem. Studia Logica 85(1), 41–73 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Guitart, R., Lair, C.: Calcul syntaxique des modèles et calcul des formules internes. Diagramme 4 (1980)Google Scholar
  45. 45.
    Hennicker, R., Bidoit, M.: Observational logic. In: Haeberer, A.M. (ed.) AMAST 1998. LNCS, vol. 1548, pp. 263–277. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  46. 46.
    Makkai, M.: Ultraproducts and categorical logic. In: DiPrisco, C.A. (ed.) Methods in Mathematical Logic. Lecture Notes in Mathematics, vol. 1130, pp. 222–309. Springer (1985)Google Scholar
  47. 47.
    Makkai, M., Reyes, G.: First order categorical logic: Model-theoretical methods in the theory of topoi and related categories. Lecture Notes in Mathematics, vol. 611. Springer (1977)Google Scholar
  48. 48.
    Martins, M.A., Madeira, A., Diaconescu, R., Barbosa, L.S.: Hybridization of institutions. In: Corradini, A., Klin, B., Cîrstea, C. (eds.) CALCO 2011. LNCS, vol. 6859, pp. 283–297. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  49. 49.
    Matthiessen, G.: Regular and strongly finitary structures over strongly algebroidal categories. Canadian Journal of Mathematics 30, 250–261 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  50. 50.
    Donald Monk, J.: Mathematical Logic. Springer (1976)Google Scholar
  51. 51.
    Petria, M., Diaconescu, R.: Abstract Beth definability in institutions. Journal of Symbolic Logic 71(3), 1002–1028 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  52. 52.
    Reichel, H.: Behavioural equivalence – a unifying concept for initial and final specifications. In: Proceedings, Third Hungarian Computer Science Conference, Budapest. Akademiai Kiado (1981)Google Scholar
  53. 53.
    Reichel, H.: Initial Computability, Algebraic Specifications, and Partial Algebras, Clarendon (1987)Google Scholar
  54. 54.
    Roşu, G.: Hidden Logic. PhD thesis, University of California at San Diego (2000)Google Scholar
  55. 55.
    Rodenburg, P.-H.: Interpolation in conditional equational logic. Preprint from Programming Research Group at the University of Amsterdam (1989)Google Scholar
  56. 56.
    Rodenburg, P.-H.: A simple algebraic proof of the equational interpolation theorem. Algebra Universalis 28, 48–51 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  57. 57.
    Sannella, D., Tarlecki, A.: Foundations of Algebraic Specifications and Formal Software Development. Springer (2012)Google Scholar
  58. 58.
    Shoenfield, J.: Mathematical Logic. Addison-Wesley (1967)Google Scholar
  59. 59.
    Tarlecki, A.: Bits and pieces of the theory of institutions. In: Pitt, D., Abramsky, S., Poigné, A., Rydeheard, D. (eds.) Category Theory and Computer Programming. LNCS, vol. 240, pp. 334–360. Springer, Heidelberg (1986)CrossRefGoogle Scholar
  60. 60.
    Tarski, A.: On some fundamental concepts of metamathematics. In: Logic, Semantics, Metamathematics, pp. 30–37. Oxford University Press (1956)Google Scholar
  61. 61.
    Veloso, P.: On pushout consistency, modularity and interpolation for logical specifications. Information Processing Letters 60(2), 59–66 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  62. 62.
    Wells, C.F.: Sketches: Outline with references (unpublished draft)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Răzvan Diaconescu
    • 1
  1. 1.Simion Stoilow Institute of Mathematics of the Romanian AcademyRomania

Personalised recommendations