Auto-adaptation of Genetic Operators for Multi-objective Optimization in the Firefighter Problem

  • Krzysztof Michalak
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8669)


In the firefighter problem the spread of fire is modelled on an undirected graph. The goal is to find such an assignment of firefighters to the nodes of the graph that they save as large part of the graph as possible.

In this paper a multi-objective version of the firefighter problem is proposed and solved using an evolutionary algorithm. Two different auto-adaptation mechanisms are used for genetic operators selection and the effectiveness of various crossover and mutation operators is studied.


operator auto-adaptation multi-objective evolutionary optimization graph-based optimization firefighter problem 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anderson, P.G., Ashlock, D.: Advances in ordered greed. In: Dagli, C.H. (ed.) Proceedings of ANNIE 2004 International Conference on Intelligent Engineering Systems through Artificial Neural Networks, pp. 223–228. ASME Press, New York (2004)Google Scholar
  2. 2.
    Bierwirth, C., Mattfeld, D.C., Kopfer, H.: On permutation representations for scheduling problems. In: Ebeling, W., Rechenberg, I., Voigt, H.-M., Schwefel, H.-P. (eds.) PPSN 1996. LNCS, vol. 1141, pp. 310–318. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  3. 3.
    Blanton Jr., J.L., Wainwright, R.L.: Multiple vehicle routing with time and capacity constraints using genetic algorithms. In: Proceedings of the 5th International Conference on Genetic Algorithms, pp. 452–459. Morgan Kaufmann Publishers Inc., San Francisco (1993)Google Scholar
  4. 4.
    Blum, C., Blesa, M.J., García-Martínez, C., Rodríguez, F.J., Lozano, M.: The firefighter problem: Application of hybrid ant colony optimization algorithms. In: Blum, C., Ochoa, G. (eds.) EvoCOP 2014. LNCS, vol. 8600, pp. 218–229. Springer, Heidelberg (2014)Google Scholar
  5. 5.
    Cicirello, V.A., Smith, S.F.: Modeling GA performance for control parameter optimization. Morgan Kaufmann Publishers (2000)Google Scholar
  6. 6.
    Cicirello, V.A.: Non-wrapping order crossover: An order preserving crossover operator that respects absolute position. In: Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation, pp. 1125–1132. ACM, New York (2006)Google Scholar
  7. 7.
    Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6, 182–197 (2002)CrossRefGoogle Scholar
  8. 8.
    Develin, M., Hartke, S.G.: Fire containment in grids of dimension three and higher. Discrete Appl. Math. 155(17), 2257–2268 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Falkenauer, E., Bouffouix, S.: A genetic algorithm for job shop. In: Proceedings of the 1991 IEEE International Conference on Robotics and Automation, pp. 824–829 (1991)Google Scholar
  10. 10.
    Fleischer, M.: The measure of pareto optima. applications to multi-objective metaheuristics. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 519–533. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  11. 11.
    Goldberg, D.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison Wesley (1989)Google Scholar
  12. 12.
    Goldberg, D.E., Lingle Jr., R.: Alleles, loci, and the traveling salesman problem. In: Grefenstette, J.J. (ed.) Proceedings of the First International Conference on Genetic Algorithms and Their Applications, pp. 154–159. Lawrence Erlbaum Associates Publishers (1985)Google Scholar
  13. 13.
    Haghighi, A., Asl, A.Z.: Uncertainty analysis of water supply networks using the fuzzy set theory and NSGA-II. Engineering Applications of Artificial Intelligence 32, 270–282 (2014)CrossRefGoogle Scholar
  14. 14.
    Hartnell, B.: Firefighter! an application of domination. In: 20th Conference on Numerical Mathematics and Computing (1995)Google Scholar
  15. 15.
    Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs. Springer, Heidelberg (1994)CrossRefzbMATHGoogle Scholar
  16. 16.
    Mumford, C.L.: New order-based crossovers for the graph coloring problem. In: Runarsson, T.P., Beyer, H.-G., Burke, E.K., Merelo-Guervós, J.J., Whitley, L.D., Yao, X. (eds.) PPSN 2006. LNCS, vol. 4193, pp. 880–889. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  17. 17.
    Oliver, I.M., Smith, D.J., Holland, J.R.C.: A study of permutation crossover operators on the traveling salesman problem. In: Proceedings of the Second International Conference on Genetic Algorithms on Genetic Algorithms and Their Applications, pp. 224–230. Lawrence Erlbaum Associates Inc., Hillsdale (1987)Google Scholar
  18. 18.
    Sadeghi, J., et al.: A hybrid vendor managed inventory and redundancy allocation optimization problem in supply chain management: An NSGA-II with tuned parameters. Computers & Operations Research 41, 53–64 (2014)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Syswerda, G.: Schedule optimization using genetic algorithms. In: Davis, L. (ed.) Handbook of Genetic Algorithms. Van Nostrand Reinhold, New York (1991)Google Scholar
  20. 20.
    Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., da Fonseca, V.G.: Performance assessment of multiobjective optimizers: An analysis and review. IEEE Transactions on Evolutionary Computation 7, 117–132 (2002)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Krzysztof Michalak
    • 1
  1. 1.Department of Information Technologies, Institute of Business InformaticsWroclaw University of EconomicsWroclawPoland

Personalised recommendations