Continuous Population-Based Incremental Learning with Mixture Probability Modeling for Dynamic Optimization Problems

  • Adrian Lancucki
  • Jan Chorowski
  • Krzysztof Michalak
  • Patryk Filipiak
  • Piotr Lipinski
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8669)

Abstract

This paper proposes a multimodal extension of PBIL C based on Gaussian mixture models for solving dynamic optimization problems. By tracking multiple optima, the algorithm is able to follow the changes in objective functions more efficiently than in the unimodal case. The approach was validated on a set of synthetic benchmarks including Moving Peaks, dynamization of the Rosenbrock function and compositions of functions from the IEEE CEC’2009 competition. The results obtained in the experiments proved the efficiency of the approach in solving dynamic problems with a number of competing peaks.

Keywords

evolutionary algorithms estimation of distribution algorithms dynamic optimization problems multimodal optimization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Special session & competition on “Evolutionary computation in dynamic and uncertain environments”, http://www3.ntu.edu.sg/home/epnsugan/index_files/CEC-09-Dynamic-Opt/CEC09-Dyn-Opt.htm (accessed: May 1, 2014)
  2. 2.
    Branke, J.: Memory enhanced evolutionary algorithms for changing optimization problems. In: Congress on Evolutionary Computation, CEC 1999, pp. 1875–1882. IEEE (1999)Google Scholar
  3. 3.
    Brest, J., Zamuda, A., Boskovic, B., Maucec, M.S., Zumer, V.: Dynamic optimization using self-adaptive differential evolution. In: IEEE Congress on Evolutionary Computation, pp. 415–422. IEEE (2009)Google Scholar
  4. 4.
    Chen, S.H., Chen, M.C., Chang, P.C., Zhang, Q., Chen, Y.M.: Guidelines for developing effective estimation of distribution algorithms in solving single machine scheduling problems. Expert Syst. Appl. 37(9), 6441–6451 (2010)CrossRefGoogle Scholar
  5. 5.
    Dong, W., Yao, X.: Unified eigen analysis on multivariate gaussian based estimation of distribution algorithms. Inf. Sci. 178(15), 3000–3023 (2008)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Li, C., Yang, S., Nguyen, T.T., Yu, E.L., Yao, X., Jin, Y., Beyer, H.G., Suganthan, P.N.: Benchmark generator for CEC 2009 competition on dynamic optimization. University of Leicester, University of Birmingham, Nanyang Technological University, Tech. Rep. (2008)Google Scholar
  7. 7.
    Nguyen, T.T., Yang, S., Branke, J.: Evolutionary dynamic optimization: A survey of the state of the art. Swarm and Evolutionary Computation 6, 1–24 (2012)CrossRefGoogle Scholar
  8. 8.
    Pelikan, M., Goldberg, D.E.: Hierarchical problem solving by the bayesian optimization algorithm. In: Proceedings of GECCO 2000, pp. 267–274. Morgan Kaufmann (2000)Google Scholar
  9. 9.
    Santana, R., Larrañaga, P., Lozano, J.A.: Side chain placement using estimation of distribution algorithms. Artificial Intelligence in Medicine 39(1), 49–63 (2007)CrossRefGoogle Scholar
  10. 10.
    Schaul, T., Glasmachers, T., Schmidhuber, J.: High dimensions and heavy tails for natural evolution strategies. In: GECCO, pp. 845–852. ACM (2011)Google Scholar
  11. 11.
    Sebag, M., Ducoulombier, A.: Extending population-based incremental learning to continuous search spaces. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 418–427. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  12. 12.
    Shim, V.A., Tan, K.C., Cheong, C.Y., Chia, J.Y.: Enhancing the scalability of multi-objective optimization via restricted boltzmann machine-based estimation of distribution algorithm. Inf. Sci. 248, 191–213 (2013)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Yan, W., Xiaoxiong, L.: An improved univariate marginal distribution algorithm for dynamic optimization problem. AASRI Procedia 1, 166–170 (2012), AASRI Conference on Computational Intelligence and BioinformaticsGoogle Scholar
  14. 14.
    Yang, S.: Evolutionary computation for dynamic optimization problems. In: GECCO (Companion), pp. 667–682 (2013)Google Scholar
  15. 15.
    Yang, S., Yao, X.: Experimental study on population-based incremental learning algorithms for dynamic optimization problems. Soft Comput. 9(11), 815–834 (2005)CrossRefMATHGoogle Scholar
  16. 16.
    Yuan, B.: On the importance of diversity maintenance in estimation of distribution algorithms. In: Proceedings of GECCO 2005, pp. 719–726. ACM Press (2005)Google Scholar
  17. 17.
    Yuan, B., Orlowska, M.E., Sadiq, S.W.: Extending a class of continuous estimation of distribution algorithms to dynamic problems. Optimization Letters 2(3), 433–443 (2008)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Zhong, X., Li, W.: A decision-tree-based multi-objective estimation of distribution algorithm. In: 2013 Ninth International Conference on Computational Intelligence and Security, pp. 114–11/8 (2007)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Adrian Lancucki
    • 1
  • Jan Chorowski
    • 1
  • Krzysztof Michalak
    • 2
  • Patryk Filipiak
    • 1
  • Piotr Lipinski
    • 1
  1. 1.Computational Intelligence Research Group, Institute of Computer ScienceUniversity of WroclawWroclawPoland
  2. 2.Institute of Business InformaticsWroclaw University of EconomicsWroclawPoland

Personalised recommendations