Advertisement

Sim-EA: An Evolutionary Algorithm Based on Problem Similarity

  • Krzysztof Michalak
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8669)

Abstract

In this paper a new evolutionary algorithm Sim-EA is presented. This algorithm is designed to tackle several instances of an optimization problem at once based on an assumption that it might be beneficial to share information between solutions of similar instances. The Sim-EA algorithm utilizes the concept of multipopulation optimization. Each subpopulation is assigned to solve one of the instances which are similar to each other. Problem instance similarity is expressed numerically and the value representing similarity of any pair of instances is used for controlling specimen migration between subpopulations tackling these two particular instances.

Keywords

multipopulation algorithms evolutionary optimization combinatorial optimization travelling salesman problem 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bessaou, M., Petrowski, A., Siarry, P.: Island model cooperating with speciation for multimodal optimization. In: Deb, K., Rudolph, G., Lutton, E., Merelo, J.J., Schoenauer, M., Schwefel, H.-P., Yao, X. (eds.) PPSN 2000. LNCS, vol. 1917, pp. 437–446. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  2. 2.
    Brest, J., Zamuda, A., Boskovic, B., Maucec, M.S., Zumer, V.: Dynamic optimization using self-adaptive differential evolution. In: IEEE Congress on Evolutionary Computation, pp. 415–422. IEEE (2009)Google Scholar
  3. 3.
    Chen, J., Wineberg, M.: Enhancement of the shifting balance genetic algorithm for highly multimodal problems. In: Proceedings of the 2004 IEEE Congress on Evolutionary Computation, pp. 744–751. IEEE Press, Portland (2004)Google Scholar
  4. 4.
    Derrac, J., et al.: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm and Evolutionary Computation 1(1), 3–18 (2011)CrossRefGoogle Scholar
  5. 5.
    Giacobini, M., Preuß, M., Tomassini, M.: Effects of scale-free and small-world topologies on binary coded self-adaptive CEA. In: Gottlieb, J., Raidl, G.R. (eds.) EvoCOP 2006. LNCS, vol. 3906, pp. 86–98. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Gutin, G., Punnen, A. (eds.): The Traveling Salesman Problem and Its Variations. Combinatorial Optimization. Springer (2007)Google Scholar
  7. 7.
    Li, J.P., Balazs, M.E., Parks, G.T., Clarkson, P.J.: A species conserving genetic algorithm for multimodal function optimization. Evol. Comput. 10(3), 207–234 (2002)CrossRefGoogle Scholar
  8. 8.
    Miller, B.L., Goldberg, D.E.: Genetic algorithms, tournament selection, and the effects of noise. Complex Systems 9, 193–212 (1995)MathSciNetGoogle Scholar
  9. 9.
    Talbi, E.-G., Mostaghim, S., Okabe, T., Ishibuchi, H., Rudolph, G., Coello Coello, C.A.: Parallel approaches for multiobjective optimization. In: Branke, J., Deb, K., Miettinen, K., Słowiński, R. (eds.) Multiobjective Optimization. LNCS, vol. 5252, pp. 349–372. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Tao, G., Michalewicz, Z.: Inver-over operator for the TSP. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 803–812. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  11. 11.
    Tsutsui, S., Fujimoto, Y., Ghosh, A.: Forking genetic algorithms: Gas with search space division schemes. Evolutionary Computation 5(1), 61–80 (1997)CrossRefGoogle Scholar
  12. 12.
    Ursem, R.K.: Multinational GA Optimization Techniques in Dynamic Environments. In: Whitley, D., Goldberg, D., Paz, C.E., Spector, L., Parmee, I., Beyer, H.G. (eds.) Genetic and Evolutionary Computation Conference, pp. 19–26. Morgan Kaufmann (2000)Google Scholar
  13. 13.
    Watson, J., Ross, C., Eisele, V., Denton, J., Bins, J., Guerra, C., Whitley, L.D., Howe, A.: The traveling salesrep problem, edge assembly crossover, and 2-opt. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 823–832. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  14. 14.
    Wilcoxon, F.: Individual comparisons by ranking methods. Biometrics Bulletin 1(6), 80–83 (1945)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Krzysztof Michalak
    • 1
  1. 1.Department of Information Technologies, Institute of Business InformaticsWroclaw University of EconomicsWroclawPoland

Personalised recommendations