Advertisement

Feasibility Study of a Future Satellite Gravity Mission Using GEO-LEO Line-of-Sight Observations

  • Jakob Schlie
  • Michael Murböck
  • Roland PailEmail author
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 141)

Abstract

In this article the feasibility of gravity field determination with very high-low satellite-to-satellite tracking, as intended as part of the GETRIS (“Geodesy and Time Reference in Space”) mission concept, is investigated. For this purpose several geostationary satellites (GEOs) are positioned around the Earth. A microwave system is used to determine the relative position between satellites in low Earth orbits (LEOs) and GEOs with very high accuracy, from which the gravity field of the Earth can be estimated.This concept is simulated to retrieve the time-variable gravity field caused by temporal changes in continental hydrology. The simulation is based on simplified assumptions, taking only errors of the ranging instrument into account. The gravity field is recovered in a closed-loop environment from the simulated observations. Furthermore, the possibility of enhancing GRACE results with GEO-LEO tracking is investigated.Overall the results show that the GEO-LEO concept is very promising, since it possibly reduces some of the weaknesses of the LEO-LEO tracking concept and measures the radial component of the Earth’s gravity field. Due to the option of multi-satellite tracking, the time-variable gravity field might be observed within shorter time periods than with a single GRACE-like mission. However, more detailed simulations are required to draw final conclusions on the exact magnitude of benefit.

Keywords

Future gravity mission GETRIS GRACE destriping Satellite geodesy Satellite-to-satellite tracking Time variable gravity  

Notes

Acknowledgements

This study was inspired by the ESA project “Geodesy and Time Reference in Space” (GETRIS), contract no. 4000103328/2011/NL/WE.

We thank Dr. W. Schäfer for providing us with detailed information on technical issues, and Fig. 1 of this paper.

References

  1. Bender PL, Wiese DN, Nerem RS (2008) A possible dual-GRACE mission with 90 degree and 63 degree inclination orbits. In: Proceedings of the third international symposium on formation flying, missions and technologies. ESA/ESTEC, Noordwijk (ESA SP-654, June 2008), pp 1–6. ISBN 978-92-9221-218-6Google Scholar
  2. Cacciapuoti L, Salomon Ch (2009) Space clocks and fundamental tests: The ACES experiment. Eur Phys J Special Topics 172:57–68CrossRefGoogle Scholar
  3. Douglas B, Goad CC, Morrison FF (1980) Determination of the geopotential from satellite to satellite tracking data. J Geophys Res 85(NB10):5471–5480. doi:10.1029/JB085iB10p05471Google Scholar
  4. Gruber T, Bamber JL, Bierkens MFP, Dobslaw H, Murböck M, Thomas M et al (2011) Simulation of the time-variable gravity field by means of coupled geophysical models. Earth Syst Sci Data 3(1):19–35CrossRefGoogle Scholar
  5. Hess MP, Kehrer J, Kufner M, Durand S, Hejc G, Fruhauf H, et al (2011) ACES MWL status and test results. In: 2011 Joint Conference of the IEEE international frequency control and the European frequency and time forum (FCS), pp 1–8. doi:10.1109/FCS.2011.5977727Google Scholar
  6. Horwath M, Dietrich R (2009) Signal and error in mass change inferences from GRACE: the case of Antarctica. Geophys J Int 177(3):849–864CrossRefGoogle Scholar
  7. Lyard F, Lefevre F, Letellier T, Francis O (2006) Modelling the global ocean tides: a modern insight from FES2004. Ocean Dyn 56:394–415CrossRefGoogle Scholar
  8. Pail R, Mayrhofer R (2009) Satellite formations for the reduction of temporal (tidal) aliasing effects. Presented at IAG 2009, Geodesy for Planet Earth, Buenos Aires, August 31, 2009. http://www.iapg.bv.tum.de/mediadb/5505990/5505991/20090831%5FPoster%5FMISSIONSIM%5FOTIDE%5FIAG20…pdf Accessed 16 Apr 2013
  9. Pail R, Goiginger H, Schuh W-D, Höck E, Brockmann JM, Fecher T, Gruber T, Mayer-Gürr T, Kusche J, Jäggi A, Rieser D (2010) Combined satellite gravity field model GOCO01S derived from GOCE and GRACE. Geophysical Research Letters EID L20314, vol 37. American Geophysical Union. doi:10.1029/2010GL044906. ISSN 0094-8276Google Scholar
  10. Ramillien G, Cazenava A, Brunau O (2004) Global time variations of hydrological signals from GRACE satellite gravimetry. Geophys J Int 158(3):813–826CrossRefGoogle Scholar
  11. Savcenko R, Bosch W (2008) EOT08a-empirical ocean tide model from multi-mission satellite altimetry. Report No. 81. German Geodetic Research Institute, MunichGoogle Scholar
  12. Swenson S, Wahr J (2006), Post-processing removal of correlated errors in GRACE. Geophys Res Lett 33:L08402. doi:10.1029/2005GL025285Google Scholar
  13. Tapley BD, Bettadpur S, Ries JC, Thompson PF, Watkins MM (2004), GRACE measurements of mass variability in the earth system. Science 305:1503–1505CrossRefGoogle Scholar
  14. Tapley BD, Ries J, Bettadpur S, Chambers D, Cheng M, Condi F, Poole S (2007) The GGM03 mean earth gravity model from GRACE. Eos Trans, AGU, 88(52), Fall Meeting Suppl., Abstract G42A-03Google Scholar
  15. Van Beek LPH, Bierkens MFP (2008) The Global Hydrological Model PCR-GLOBWB: Conceptualization, Parameterization and Verification. Report, Department of Physical Geography, Utrecht University, Utrecht, The Netherlands, http://vanbeek.geo.uu.nl/suppinfo/vanbeekbierkens2009.pdf. Accessed 26 February 2013
  16. Vonbun FO, Argentiero PD, Schmid PE (1978) Orbit determination accuracies using satellite-to-satellite tracking. IEEE Trans Aerospace and Electronic Syst 14(6):834–842. doi:10.1109/TAES.1978.308547CrossRefGoogle Scholar
  17. Werth S, Güntner A, Schmidt R, Kusche J (2009) Evaluation of GRACE filter tools from a hydrological perspective. Geophys J Int 179(3):1499–1515CrossRefGoogle Scholar
  18. Wiese DN, Nerem RS, Lemoine FG (2012) Design considerations for a dedicated gravity recovery satellite mission consisting of two pairs of satellites. J Geodesy 86(2):81–98CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Institut für Astronomische und Physikalische GeodäsieTechnische Universität MünchenMunichGermany

Personalised recommendations