Improving Video QoE in Unmanned Aerial Vehicles Using an Adaptive FEC Mechanism

Part of the Lecture Notes in Computer Science book series (LNCS, volume 8611)


Unmanned aerial vehicles (UAV) are rising in popularity together with video applications for both military and civilian use. Because of that, it is necessary to address a set of challenges related to the device movement, scarce resources as well as high error rates, making evident the need for an adaptive mechanism to strengthen video transmissions. Adaptive Forward Error Correction (FEC) techniques are known to be suitable to enhance the Quality of Experience (QoE) of video transmitted over error-prone wireless networks with high mobility. This book chapter proposes an adaptive video-aware FEC mechanism that uses motion vectors details to improve real-time UAV video transmissions, providing both higher user experience and better usage of resources. The benefits and drawbacks of the proposed mechanism along with the related work are analysed and put up for test through simulations and evaluated using QoE metrics.


Motion Vectors (MV) Forward Error Correction (FEC) Video-aware FEC Fuzzy logic QoE Unequal Error Protection (UEP) 



This work was funded by the Brazilian National Counsel of Technological and Scientific Development (CNPq) and also supported by the Intelligent Computing in the Internet of Services (iCIS) project (CENTRO-07-ST24-FEDER-002003), co-financed by QREN, in the scope of the Mais Centro Program.


  1. 1.
    Kumar, R., Sawhney, H., Samarasekera, S., Hsu, S., Tao, H., Guo, Y., Hanna, K., Pope, A., Wildes, R., Hirvonen, D., et al.: Aerial video surveillance and exploitation. Proc. IEEE 89(10), 1518–1539 (2001)CrossRefGoogle Scholar
  2. 2.
    Puri, A.: A survey of unmanned aerial vehicles (UAV) for traffic surveillance. Department of Computer Science and Engineering, University of South Florida (2005)Google Scholar
  3. 3.
    Bekmezci, İ., Sahingoz, O.K., Temel, Ş.: Flying ad-hoc networks (FANETs): a survey. Ad Hoc Netw. 11(3), 1254–1270 (2013)CrossRefGoogle Scholar
  4. 4.
    Bernard, M., Kondak, K., Maza, I., Ollero, A.: Autonomous transportation and deployment with aerial robots for search and rescue missions. J. Field Robot. 28(6), 914–931 (2011)CrossRefGoogle Scholar
  5. 5.
    Frew, E., Brown, T.: Networking issues for small unmanned aircraft systems. J. Intell. Rob. Syst. 54(1–3), 21–37 (2009). CrossRefGoogle Scholar
  6. 6.
    Lindeberg, M., Kristiansen, S., Plagemann, T., Goebel, V.: Challenges and techniques for video streaming over mobile ad hoc networks. Multimedia Syst. 17, 51–82 (2011)CrossRefGoogle Scholar
  7. 7.
    Liu, T., Liao, W.: Interference-aware QoS routing for multi-rate multi-radio multi-channel IEEE 802.11 wireless mesh networks. IEEE Trans. Wireless Commun. 8(1), 166–175 (2009)CrossRefGoogle Scholar
  8. 8.
    Piamrat, K., Viho, C., Bonnin, J.-M., Ksentini, A.: Quality of experience measurements for video streaming over wireless networks. In: Third International Conference on Information Technology: New Generations, pp. 1184–1189 (2009)Google Scholar
  9. 9.
    Yuan, Y., Cockburn, B., Sikora, T., Mandal, M.: A GoP based FEC technique for packet based video streaming. In: Proceedings of the 10th WSEAS International Conference on Communications, ICCOM’06, pp. 187–192 (2006)Google Scholar
  10. 10.
    Nafaa, A., Taleb, T., Murphy, L.: Forward error correction strategies for media streaming over wireless networks. IEEE Commun. Mag. 46(1), 72–79 (2008)CrossRefGoogle Scholar
  11. 11.
    Lee, J.-W., Chen, C.-L., Horng, M.-F., Kuo, Y.-H.: An efficient adaptive FEC algorithm for short-term quality control in wireless networks. In: Advanced Communication Technology (ICACT), pp. 1124–1129, February 2011Google Scholar
  12. 12.
    Fang, H., Jiang, J., Feng, Y.: A fuzzy logic approach for detection of video shot boundaries. Pattern Recognit. 39(11), 2092–2100 (2006). CrossRefMATHGoogle Scholar
  13. 13.
    Fleury, M., Jammeh, E., Razavi, R., Ghanbari, M.: Resource-aware fuzzy logic control of video streaming over IP and wireless networks. In: Hassanien, A.-E., Abawajy, J.H., Abraham, A., Hagras, H. (eds.) Pervasive Computing. Computer Communications and Networks, pp. 47–75. Springer, London (2010)Google Scholar
  14. 14.
    Fauzi, F., Yang, D.: Fuzzy logic for bandwidth allocator applies on IP multimedia traffic. In: International Conference of Information and Communication Technology (ICoICT), pp. 416–421 (2013)Google Scholar
  15. 15.
    Pitas, C., Charilas, D., Panagopoulos, A., Constantinou, P.: Adaptive neuro-fuzzy inference models for speech and video quality prediction in real-world mobile communication networks. IEEE Wirel. Commun. 20(3), 80–88 (2013)CrossRefGoogle Scholar
  16. 16.
    Han, L., Park, S., Kang, S.-S., In, H.P.: An adaptive FEC mechanism using cross-layer approach to enhance quality of video transmission over 802.11 WLANs. In: TIIS, pp. 341–357 (2010)Google Scholar
  17. 17.
    Hassan, M., Landolsi, T.: A retransmission-based scheme for video streaming over wireless channels. Wirel. Commun. Mob. Comput. 10, 511–521 (2010)Google Scholar
  18. 18.
    Tsai, M.-F., Chilamkurti, N.K., Zeadally, S., Vinel, A.: Concurrent multipath transmission combining forward error correction and path interleaving for video streaming. Comput. Commun. 34, 1125–1136 (2011)CrossRefGoogle Scholar
  19. 19.
    Lin, C.-H., Wang, Y.-C., Shieh, C.-K., Hwang, W.-S.: An unequal error protection mechanism for video streaming over IEEE 802.11e WLANs. Comput. Netw. 56(11), 2590–2599 (2012)CrossRefGoogle Scholar
  20. 20.
    Immich, R., Cerqueira, E., Curado, M.: Cross-layer FEC-based mechanism for packet loss resilient video transmission. In: Biersack, E., Callegari, C., Matijasevic, M. (eds.) Data Traffic Monitoring and Analysis. LNCS, vol. 7754, pp. 320–336. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  21. 21.
    Pedrycz, W.: Why triangular membership functions? Fuzzy Sets Syst. 64(1), 21–30 (1994). CrossRefMathSciNetGoogle Scholar
  22. 22.
    Bouachir, O., Garcia, F., Larrieu, N., Gayraud, T.: Ad hoc network QoS architecture for cooperative unmanned aerial vehicles (UAVs). In: Wireless Days, pp. 1–4. IEEE (2013)Google Scholar
  23. 23.
    Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Roger Immich
    • 1
  • Eduardo Cerqueira
    • 2
  • Marilia Curado
    • 1
  1. 1.Department of Informatics EngineeringUniversity of CoimbraCoimbraPortugal
  2. 2.Institute of TechnologyFederal University of ParaBelémBrazil

Personalised recommendations