Metamorphic Controller for Collaborative Design of an Optimal Structure of the Control System

  • Tomasz Klopot
  • Dariusz Choiński
  • Piotr Skupin
  • Daniel Szczypka
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8683)

Abstract

When designing a control system, the customer specifies some control requirements and the expert provides the parameterized optimal controller. A change of the control algorithm to a more advanced one may lead to a better performance of the closed loop system. On the other hand, implementation and parameterization of the advanced controllers require more extensive knowledge. A possible solution is a group of cooperating experts that are able to determine the most suitable control algorithm, depending on the customer’s requirements. However, in practice, hiring more experts is an expensive approach. Hence, the performance of majority of industrial systems is not optimal. The paper presents the metamorphic controller with extended functionality for selection of an optimal control algorithm (including advanced controllers). As a result, only one expert, cooperating with the customer, is sufficient to ensure the optimal system performance. The proposed solution has been implemented and tested on the industrial controller.

Keywords

Metamorphic controller collaborative design programmable logic controller (PLC) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yu, C.C.: Autotuning of PID Controllers: Relay Feedback Approach. Springer, New York (1999)Google Scholar
  2. 2.
    Li, Y., Ang, K., Chong, G.: PID control system analysis and design. IEEE Control Syst. Mag. 26, 32–41 (2006)Google Scholar
  3. 3.
    Czeczot, J.: Balance-Based Adaptive Control of a Neutralization Process. Int. J. Control. 79, 1581–1600 (2006)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Nocon, W., Metzger, M.: Predictive Control of Decantation in Batch Sedimentation Process. AICHE J. 56, 3279–3283 (2010)CrossRefGoogle Scholar
  5. 5.
    Choinski, D., Metzger, M., Nocon, W.: MAS-Based Cooperative Control for Biotechnological Process-A Case Study. In: Mařík, V., Strasser, T., Zoitl, A. (eds.) HoloMAS 2009. LNCS, vol. 5696, pp. 175–182. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Choinski, D., Metzger, M., Nocon, W.: Cooperative operating control based on virtual resources and user-suited HCI. In: Luo, Y. (ed.) CDVE 2009. LNCS, vol. 5738, pp. 216–223. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  7. 7.
    Gyoongy, I.J., Clarke, D.W.: On the automatic tuning and adaptation of PID controllers. Control Eng. Pract. 14, 149–163 (2006)CrossRefGoogle Scholar
  8. 8.
    Metzger, M.: Comparison of the RK4M4 RK4LIN and RK4M1 methods for systems with time-delays. Simul. 52, 189–193 (1989)CrossRefMATHGoogle Scholar
  9. 9.
    Ziegler, J.G., Nichols, N.B.: Optimum settings for automatic controllers. Trans. ASME. 64, 759–768 (1942)Google Scholar
  10. 10.
    Paul, A., Akar, M., Safonov, M.G., Mitra, U.: Adaptive power control for wireless networks using multiple controllers and switching. IEEE Trans. Neural. Netw. 16, 1212–1218 (2005)CrossRefGoogle Scholar
  11. 11.
    Wilson, C., Callen, C.: Close process control translates to quality heat treated parts. Ind. Heating - Pittsburg then Troy. 71, 25–28 (2004)Google Scholar
  12. 12.
    Li, Y., Ang, K., Chong, G.: Patents, software, and hardware for PID control. IEEE Control Syst. Mag. 26, 42–54 (2006)Google Scholar
  13. 13.
    Weinzierl, K.: Method for Generating Conrol Parameters From a Response Signal of a Ccontrolled System and System for Adaptive Setting af a PID Controller. U.S. Patent 6,353,766 B1 (2002)Google Scholar
  14. 14.
    Balasubramanian, S., Brennan, R.W., Norrie, D.H.: An architecture for metamorphic control of holonic manufacturing systems. Comp. Ind. 46, 13–31 (2001)CrossRefGoogle Scholar
  15. 15.
    Brennan, R.W., Zhang, X., Xu, Y., Norrie, D.H.: A Reconfigurable Concurrent Function Block Model and its implementation in Real-Time Java. Integr. Comput.-Aided Eng. 9, 263–279 (2002)Google Scholar
  16. 16.
    Abdullah, R., Hussain, A., Warwick, K., Zayed, A.: Autonomous Intelligent Cruise Control Using a Novel Multiple-Controller Framework Incorporating Fuzzy-Logic Based Switching and Tuning. Neurocomputing 71, 2727–2741 (2008)CrossRefGoogle Scholar
  17. 17.
    Wang, R., Paul, A., Stefanovic, M., Safonov, M.G.: Cost-detectability and stability of adaptive control systems. In: 44th IEEE Conference on Decision and Control and European Control Conference, Seville, pp. 3584–3589 (2005)Google Scholar
  18. 18.
    Davendra, D., Zelinka, I., Senkerik, R.: Chaos driven evolutionary algorithms for the task of PID control. Comput. Math. Appl. 60, 1088–1104 (2010)CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Vyatkin, V.: IEC 61499 Function blocks for embedded and distributed control systems design. ISA, Research Triangle Park (2007)Google Scholar
  20. 20.
    Stebel, K., Czeczot, J., Laszczyk, P.: General tuning procedure for the nonlinear balance-based adaptive controller. Int. J. Control. 87, 76–89 (2014)CrossRefMathSciNetGoogle Scholar
  21. 21.
    Skupin, P., Klopot, W., Klopot, T.: Dynamic Matrix Control with partial decoupling. In: 11th WSEAS International Conference on Automation & Information, Iasi, pp. 61–66 (2010)Google Scholar
  22. 22.
    Klopot, W., Klopot, T., Laszczyk, P., Czeczot, J., Metzger, M.: Practical Implementation of the Nonlinear Control of the Liquid Level in the Tank of Irregular Shape. In: Lee, J., Lee, M.C., Liu, H., Ryu, J.-H. (eds.) ICIRA 2013, Part II. LNCS, vol. 8103, pp. 178–188. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  23. 23.
    Polakow, G., Metzger, M.: Performance evaluation of the parallel processing producer-distributor-consumer network architecture. Comp. Stand. Inter. 35, 596–604 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Tomasz Klopot
    • 1
  • Dariusz Choiński
    • 1
  • Piotr Skupin
    • 1
  • Daniel Szczypka
    • 1
  1. 1.Faculty of Automatic, Electronics and Computer Science ControlSilesian University of TechnologyGliwicePoland

Personalised recommendations