Comparison of Different Combination Strategies Applied for the Computation of Terrestrial Reference Frames and Geodetic Parameter Series

  • Manuela SeitzEmail author
Conference paper
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 140)


The combination of space geodetic techniques is today and becomes in future more and more important for the computation of Earth system parameters as well as for the realization of reference systems. Precision, accuracy, long-term stability and reliability of the products can be improved by the combination of different observation techniques, which provide an individual sensitivity with respect to several parameters. The estimation of geodetic parameters from observations is mostly done by least squares adjustment within a Gauß-Markov model. The combination of different techniques can be done on three different levels: on the level of observations, on the level of normal equations and on the level of parameters. The paper discusses the differences between the approaches from a theoretical point of view. The combination on observation level is the most rigorous approach since all observations are processed together ab initio, including all pre-processing steps, like e.g. outlier detection. The combination on normal equation level is an approximation of the combination on observation level. The only difference is that pre-processing steps including an editing of the observations are done technique-wise. The combination on the parameter level is more different: Technique-individual solutions are computed and the solved parameters are combined within a second least squares adjustment process. Reliable pseudo-observations (constraints) have to be applied to generate the input solutions. In order to realize the geodetic datum of the combined solution independently from the datum of the input solutions, parameters of a similarity transformation have to be set up for each input solution within the combination. Due to imperfect network geometries, the transformation parameters can absorb also non-datum effects. The multiple parameter solution of the combination process leads to a stronger dependency of the combined solution on operator decisions and on numericalaspects.


Combination DORIS GPS ITRF Normal equation level Observation level SLR VLBI 


  1. Altamimi Z, Collilieux X, Legrand J, Garayt B, Boucher C (2007) ITRF2005: a new release of the international terrestrial reference frame based on time series of station positions and Earth orientation parameters. J Geophys Res 112(B09401). doi: 10.1029/2007JB004949
  2. Altamimi Z, Collilieux X, Métivier L (2011) ITRF2008: an improved solution of the international terrestrial reference frame. J Geod. doi: 10.1007/s00190-011-0444-4 Google Scholar
  3. Angermann D, Drewes H, Krügel M, Meisel B, Gerstl M, Kelm R, Müller H, Seemüller W, Tesmer V (2004) ITRS combination center at DGFI - a terrestrial reference frame realization 2003. Deutsche Geodätische Kommission, Reihe B, MünchenGoogle Scholar
  4. Angermann D, Drewes H, Krügel M, Meisel B (2007) Advances in terrestrial reference frame computation. In: Tregoning P, Rizos C (eds) Dynamic planet. International Association of Geodesy Symposia, 130:595–602. doi:10.1007/978-3-540-49350-1_86Google Scholar
  5. Dettmering D, Schmidt M, Heinkelmann R, Seitz M (2011) Combination of different space-geodetic observations for regional ionosphere modeling. J Geod. doi: 10.1007/s00190-010-0423-1 Google Scholar
  6. Gerstl M, Kelm R, Müller H, Ehrnsperger W (2001) DOGSCS Kombination und Lösung großer Gleichungssysteme. Interner Bericht, DGFI, MünchenGoogle Scholar
  7. IERS (2010) IERS Conventions (2010). IERS Tech. Note 36. Verlag des Bundesamtes für Geodäsie und Kartographie, Frankfurt am MainGoogle Scholar
  8. Kern M, Schwarz K, Sneeuw N (2003) A study on the combination of satellite, airborne, and terrestrial gravity data. J Geod 77(3–4):217–225. doi: 10.1007/s00190-003-0313-x CrossRefGoogle Scholar
  9. Koch K (1999) Parameter estimation and hypothesis testing in linear models. Springer, BerlinCrossRefGoogle Scholar
  10. Krügel M, Thaller D, Tesmer V, Rothacher M, Angermann D, Schmid R (2007) Tropospheric parameters: combination studies based on homogeneous VLBI and GPS data. J Geod 81(6–8):515–527. doi: 10.1007/s00190-006-0127-8 CrossRefGoogle Scholar
  11. Plag H-P, Pearlman M (eds) (2009) The global geodetic observing system: meeting the requirements of a global society on a changing planet in 2020. Springer, BerlinGoogle Scholar
  12. Schmidt M, Göttl F, Heinkelmann R (2013) Towards the combination of data sets from various observation techniques. In: Kutterer H, Seitz F, Schmidt M (eds) The 1st International Workshop on the Quality of Geodetic Observation and Monitoring Systems (QuGOMS’11). International Association of Geodesy Symposia. Springer, Heidelberg, in this volumeGoogle Scholar
  13. Seitz M (2009) Combination of space geodetic techniques in order to realize the terrestrial reference system. Deutsche Geodätische Kommission, München (in German)Google Scholar
  14. Seitz M, Angermann D, Bloßfeld M, Drewes H, Gerstl M (2012) The 2008 DGFI realization of ITRS: DTRF2008. J Geod 86:1097–1123. doi: 10.1007/s00190-012-0567-2 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Deutsches Geodätisches ForschungsinstitutMünchenGermany

Personalised recommendations