High-Level Support Activities of Simulation Laboratory E&A Particles

  • G. Poghosyan
  • S. Sharma
  • A. Kaur
  • V. Jindal
  • P. Bisht
  • A. Streit
  • M. Bejger
  • A. Królak
  • T. Klaehn
  • S. Typel
  • J. Oehlschläger
  • T. Pierog
  • R. Engel
Conference paper

Abstract

The Simulation Laboratory Elementary Particle and Astropartice Physics (SimLab E&A Particle) is one of the new support instruments recently established in the Steinbuch Centre for Computing (SCC) and Jülich Supercomputing Centre (JSC) providing high-level support to supercomputer users. Simulation Laboratory (SimLab) is a community-oriented research and support team of computational scientists with a broad spectrum of competencies from computing to domain-specific knowledge. In collaboration with scientific communities the SimLabs team solves the grand challenge computing problems requiring more than the pure usage of standard services made available by HPC, Grid and Cloud infrastructure providers. The access of SimLab E&A Particles to massively parallel system Cray XE6 Hermit at High Performance Computing Centre HLRS in Stuttgart in framework of Project ACID 12863, is used to work on parallelisation, performance analysis of scalability, efficiency and estimation of potential consumption of CPU time for the codes CORSIKA (for simulation of cosmic rays/air showers), AtomicClusters (evaluation of in-medium properties of nuclear clusters), PolGrawAllSky (for searching of gravitational waves signals). The tests and optimisation of selected simulation codes, allowed us to localise the scientific domains showing strong needs and potential for supercomputing, which will help easily constitute the claim of CPU hours when applying for large scale computation time at national and European supercomputer centres.

References

  1. 1.
    Aasi, J., Abadie, J., Abbott, B.P., Abbott, R., Abbott, T.D., Abernathy, M., Accadia, T., Acernese, F., Adams, C., Adams, T., et al.: Einstein@Home all-sky search for periodic gravitational waves in LIGO S5 data. Phys. Rev. D 87, 042001 (2013)CrossRefGoogle Scholar
  2. 2.
    Astone, P., Borkowski, K.M., Jaranowski, P., Pietka, M., Królak, A.: Data analysis of gravitational-wave signals from spinning neutron stars. V.A narrow-band all-sky search. Phys. Rev. D 82, 022005 (2010)Google Scholar
  3. 3.
    Attig, N., Esser, R., Gibbon, P.: Simulation laboratories: an innovative community-oriented research and support structure. In: Bubak, M., Turala, M., Wiatr, K. (eds.) Proceedings of the Cracow Grid Workshop (CGW’07), Krakow (2008)Google Scholar
  4. 4.
    Happe, J.: Predicting Software Performance in Symmetric Multi-core and Multiprocessor Environments. The Karlsruhe Series on Software Design and Quality. Volume 3, Universittsverlag Karlsruhe, Karlsruhe (2009). http://dx.doi.org/10.5445/KSP/1000011806
  5. 5.
    Heck, D., Knapp, J., Capdevielle, J.N., Schatz, G., Thouw T.: CORSIKA: a Monte Carlo code to simulate extensive air showers, 90 pages, 10 figures: Forschungszentrum Karlsruhe Report FZKA 6019 (1998)Google Scholar
  6. 6.
    Heck, D., Pierog, T., Engel, R., Thiara, G., Karla, S., Singla, H., Poghosyan, G., Seldner, D., Schmitz, F.: Computational Methods in Science and Engineering, pp. 87–90. KIT Scientific Publishing (2011). http://dx.doi.org/10.5445/KSP/1000023323
  7. 7.
    Jaranowski, P., Królak, A., Schutz, B.F.: Data analysis of gravitational-wave signals from spinning neutron stars: the signal and its detection. Phys. Rev. D 58, 063001 (1998)CrossRefGoogle Scholar
  8. 8.
    Lee, E.A.: The problem with threads. IEEE Comput. 39(5): 33–42 (2006)CrossRefGoogle Scholar
  9. 9.
    Poghosyan, G., Seldner, D., Schmitz, F.: Simulation laboratory astro- and elementary particle physics. In: Computational Methods in Science and Engineering, Proceedings Workshop SimLabs@KIT, Karlsruhe, Nov 2011, pp. 77–84. KIT Scientific Publishing. http://dx.doi.org/10.5445/KSP/1000023323 (2011)
  10. 10.
    Rodgers, D.P.: Improvements in multiprocessor system design. SIGARCH Comput. Archit. News 13, 225–231 (1985)CrossRefGoogle Scholar
  11. 11.
    Typel, S., Röpke, G., Klähn, T., Blaschke, D., Wolter, H.H.: Composition and thermodynamics of nuclear matter with light clusters. Phys. Rev. C 81, 015803 (2010)CrossRefGoogle Scholar
  12. 12.
    Typel, S., Wolter, H.H., Röpke, G., Blaschke, D.: Effects of the liquid-gas phase transition and cluster formation on the symmetry energy. Eur. Phys. J. A 50, 17 (2014)CrossRefGoogle Scholar
  13. 13.
    Vatsa, V.N.: Parallelization of a multiblock flow code: an engineering implementation. Comput. Fluids 38(4–5), 603–614 (1999)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • G. Poghosyan
    • 1
  • S. Sharma
    • 1
    • 2
  • A. Kaur
    • 1
    • 2
  • V. Jindal
    • 1
    • 2
  • P. Bisht
    • 1
    • 2
  • A. Streit
    • 1
  • M. Bejger
    • 3
  • A. Królak
    • 4
  • T. Klaehn
    • 5
  • S. Typel
    • 6
  • J. Oehlschläger
    • 7
  • T. Pierog
    • 7
  • R. Engel
    • 7
  1. 1.Steinbuch Centre for ComputingKarlsruhe Institute of TechnologyKarlsruheGermany
  2. 2.PEC University of TechnologyChandigarhIndia
  3. 3.N. Copernicus Astronomical Center of the Polish Academy of SciencesWarsawPoland
  4. 4.Institute of Mathematics of the Polish Academy of SciencesWarszawaPoland
  5. 5.Instytut Fizyki TeoretycznejUniwersytet WroclawskiWrocławPoland
  6. 6.GSI Helmholtzzentrum für Schwerionenforschung GmbHDarmstadtGermany
  7. 7.Institute of Nuclear PhysicsKarlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations