Parallel Performance of a Discontinuous Galerkin Spectral Element Method Based PIC-DSMC Solver

  • P. Ortwein
  • T. Binder
  • S. Copplestone
  • A. Mirza
  • P. Nizenkov
  • M. Pfeiffer
  • T. Stindl
  • S. Fasoulas
  • C.-D. Munz
Conference paper

Abstract

Particle based methods are required to simulate rarefied, reactive plasma flows. A combined Particle-in-Cell Direct Simulation Monte Carlo method is used here, allowing the modelling of electromagnetic interactions and collision processes. The electromagnetic field solver of the Particle-in-Cell method has been improved by switching to a discontinuous Galerkin spectral element method. The method offers a high parallelization efficiency, which is demonstrated in this paper. In addition, the parallel performances of the complete Particle-in-Cell module and the Direct Simulation Monte Carlo module are presented.

References

  1. 1.
    Baganoff, D., McDonald, J.D.: A collision selection rule for a particle simulation method suited to vector computers. Phys. Fluids A 2, 1248–1259 (1990)CrossRefGoogle Scholar
  2. 2.
    Bird, G.: Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Oxford University Press, Oxford (1994)Google Scholar
  3. 3.
    Birdsall, C.K., Langdon, A.B.: Plasma Physics via Computer Simulation. Hilger, Bristol (1991)CrossRefGoogle Scholar
  4. 4.
    Carpenter, M.H., Kennedy, C.A.: Fourth-order 2N-storage Runge-Kutta schemes. NASA Technical Memorandum 109112, 1–26 (1994)Google Scholar
  5. 5.
    Gassner, G., Kopriva, D.A.: A comparison of the dispersion and dissipation errors of Gauss and Gauss-Lobatto discontinuous Galerkin spectral element methods. SIAM J. Sci. Comput. 33(5), 2560–2579 (2011). doi:10.1137/100807211CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Hindenlang, F., Gassner, G.J., Altmann, C., Beck, A., Staudenmaier, M., Munz, C.D.: Explicit discontinuous Galerkin methods for unsteady problems. Comput. Fluids 61, 69–93 (2012)MathSciNetGoogle Scholar
  7. 7.
    Hockney, R.W., Eastwood, J.W.: Computer Simulation Using Particles. McGraw-Hill, Inc., New York (1988)CrossRefMATHGoogle Scholar
  8. 8.
    Jacobs, G.B., Hesthaven, J.: High-order nodal discontinuous Galerkin particle-in-cell method on unstructured grids. J. Comput. Phys. 214, 96–121 (2006)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Munz, C.D., Schneider, R., Voß, U.: A finite-volume particle-in-cell method for the numerical simulation of devices in pulsed power technology. Surv. Math. Ind. 8, 243–257 (1999)MATHGoogle Scholar
  10. 10.
    Pfeiffer, M., Mirza, A., Stindl, T., Ortwein, P., Fasoulas, S., Munz, C.D.: Investigation of a parallel direct simulation monte carlo implementation. In: Poster at 16th HLRS Results and Review Workshop, Stuttgart (2013)Google Scholar
  11. 11.
    Stindl, T., Neudorfer, J., Stock, A., Auweter-Kurtz, M., Munz, C., Roller, S., Schneider, R.: Comparison of coupling techniques in a high-order discontinuous Galerkin based particle in cell solver. J. Phys. D: Appl. Phys. 44, 194,004 (2011)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • P. Ortwein
    • 1
  • T. Binder
    • 2
  • S. Copplestone
    • 1
  • A. Mirza
    • 2
  • P. Nizenkov
    • 2
  • M. Pfeiffer
    • 2
  • T. Stindl
    • 2
  • S. Fasoulas
    • 2
  • C.-D. Munz
    • 1
  1. 1.Institute of Aerodynamics and Gas Dynamics (IAG)University of StuttgartStuttgartGermany
  2. 2.Institute of Space Systems (IRS)University of StuttgartStuttgartGermany

Personalised recommendations