Skip to main content

Direct Numerical Simulation of Chemically Reacting Flows with the Public Domain Code OpenFOAM

  • Conference paper
  • First Online:
High Performance Computing in Science and Engineering ‘14

Abstract

A new solver for direct numerical simulation (DNS) of chemically reacting flow is introduced, which is developed within the framework of the open-source program OpenFOAM. The code is capable of solving numerically the compressible reactive flow equations employing unstructured grids. Therewith a detailed description of the chemistry, e.g. the reaction rates, and transport, e.g. the diffusion coefficients, has been accomplished by coupling the free chemical kinetics program Cantera. The solver implies a fully implicit scheme of second order for the time derivative and a fourth order interpolation scheme for the discretization of the convective term. An operator-split approach is used by the solver which allows solutions of the flow and chemistry with time scales that differ by orders of magnitude, leading to a significantly improved performance. In addition, the solver has proved to exhibit a good parallel scalability. The implementation of the code has first been validated by means of one-dimensional premixed flames, where the calculated flame profiles are compared with results from the commercially Chemkin code. To demonstrate the applicability of the code for three-dimensional problems, it has been applied to simulate the flame propagation in an explosion vessel of laboratory-scale. A computational grid with 144 million finite volumes has been used for this case. The simulation has been performed parallel on 8192 processors from the HERMIT cluster of HLRS. The calculated burning velocity agrees well with the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Peters, N.: Turbulent Combustion. Cambridge Monographs on Mechanics. Cambridge University Press, Cambridge (2000)

    Book  MATH  Google Scholar 

  2. Poinsot, T., Veynante, D.: Theoretical and Numerical Combustion. Edwards, Philadelphia (2005)

    Google Scholar 

  3. Chen, J.H.: Petascale direct numerical simulation of turbulent combustion. Proc. Combust. Inst. 33, 99–123 (2011)

    Article  Google Scholar 

  4. Thévenin, D., Behrendt, F., Maas, U., Przywara, B., Warnatz, J.: Development of a parallel direct simulation code to investigate reactive flows. Comput. Fluids 25(5), 485–496 (1996)

    Article  MATH  Google Scholar 

  5. Babkovskaia, N., Haugen, N., Brandenburg, A.: A high-order public domain code for direct numerical simulations of turbulent combustion. J. Comput. Phys. 230(1), 1–12 (2011)

    Article  MATH  Google Scholar 

  6. Chen, J.H., Choudhary, A., de Supinski, B., DeVries, M., Hawkes, E.R., Klasky, S., Liao, W.K., Ma, K.L., Mellor-Crummey, J., Podhorszki, N., Sankaran, R., Shende, S., Yoo, C.S.: Terascale direct numerical simulations of turbulent combustion using S3D. Comput. Sci. Discov. 2(1), 015001 (2009)

    Article  Google Scholar 

  7. OpenFOAM Foundation: OpenFOAM – The Open Source CFD Toolbox, Programmer’s Guide, Bracknell (2013)

    Google Scholar 

  8. Goodwin, D.G.: Cantera C++ User’s Guide. California Institute of Technology (2002)

    Google Scholar 

  9. Cray Inc.: Cray XE6 – HERMIT. http://www.hlrs.de/systems/platforms/cray-xe6-hermit/

  10. Kee, R.J., Coltrin, M.E., Glarborg, P.: Chemically Reacting Flow: Theory and Practice. Wiley Interscience, Hoboken (2003)

    Book  Google Scholar 

  11. Dixon-Lewis, G.: Flame structure and flame reaction kinetics. II. Transport phenomena in multicomponent systems. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 307, 111–135 (1986)

    Article  Google Scholar 

  12. Hindmarsh, A.C., Brown, P.N., Grant, K.E., Lee, S.L., Serban, R., Shumaker, D.E., Woodward, C.S.: Sundials: suite of nonlinear and differential/algebraic equation solvers. ACM Trans. Math. Softw. 31(3), 363–396 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  13. Bonart, H.: Implementation and validation of a solver for direct numerical simulations of turbulent reacting flows in OpenFOAM. Bachelor’s thesis, Karlsruhe Institute of Technology (2012). http://digbib.ubka.uni-karlsruhe.de/volltexte/1000037446

  14. Maas, U., Pope, S.: Simplifying chemical kinetics: intrinsic low-dimensional manifolds in composition space. Combust. Flame 88(34), 239–264 (1992)

    Article  Google Scholar 

  15. Day, M., Bell, J., Bremer, P.-T., Pascucci, V., Beckner, V., Lijewski, M.: Turbulence effects on cellular burning structures in lean premixed hydrogen flames. Combust. Flame 156(5), 1035–1045 (2009)

    Article  Google Scholar 

  16. Kanney, J.F., Miller, C.T., Kelley, C.: Convergence of iterative split-operator approaches for approximating nonlinear reactive transport problems. Adv. Water Resour. 26(3), 247–261 (2003)

    Article  Google Scholar 

  17. Zirwes, T.: Weiterentwicklung und Optimierung eines auf OpenFOAM basierten DNS Lösers zur Verbesserung der Effizienz und Handhabung. Bachelor’s thesis, Karlsruhe Institute of Technology (2013). http://digbib.ubka.uni-karlsruhe.de/volltexte/1000037538

  18. Gabriel, E., Fagg, G.E., Bosilca, G., Angskun, T., Dongarra, J.J., Squyres, J.M., Sahay, V., Kambadur, P., Barrett, B., Lumsdaine, A., Castain, R.H., Daniel, D.J., Graham, R.L., Woodall, T.S.: Open MPI: Goals, concept, and design of a next generation MPI implementation. In: Proceedings, 11th European PVM/MPI Users’ Group Meeting, Budapest, pp. 97–104 (2004)

    Google Scholar 

  19. Zhang, F., Bonart, H., Habisreuther, P., Bockhorn, H.: Impact of grid refinement on turbulent combustion and combustion noise modeling with large eddy simulation. In: Nagel, W.E., Kröner, D.H., Resch, M.M. (eds.) High Performance Computing in Science and Engineering’13, Stuttgart, pp. 259–274. Springer, Berlin/Heidelberg (2013)

    Google Scholar 

  20. IBM: IBM Blue Gene/Q – JUQUEEN. http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JUQUEEN/

  21. Kee, R.J., Grcar, J.F., Smooke, M.D., Miller, J.A.: Tech. Rep. SAND85-8240, Sandia National Laboratories Report (1985)

    Google Scholar 

  22. Kathrotia, T., Riedel, U., Seipel, A., Moshammer, K., Brockhinke, A.: Experimental and numerical study of chemiluminescent species in low-pressure flames. Appl. Phys. B 107(3), 571–584 (2012)

    Article  Google Scholar 

  23. Li, J., Zhao, Z., Kazakov, A., Dryer, F.L.: An updated comprehensive kinetic model of hydrogen combustion. Int. J. Chem. Kinet. 36(10), 566–575 (2004)

    Article  Google Scholar 

  24. Ferziger, J.H., Perić, M.: Computational Methods for Fluid Dynamics. Springer, Berlin (2010)

    Google Scholar 

  25. Kee, R., Rupley, F., Meeks, E., Miller, J.: CHEMKIN-III: a fortran chemical kinetics package for the analysis of gas-phase chemical and plasma kinetics. Tech. Rep. SAND96-8216, Sandia National Laboratories Report (1996)

    Google Scholar 

  26. Zhang, F., Bonart, H., Habisreuther, P., Bockhorn, H.: Direct numerical simulations of turbulent combustion with OpenFOAM. In: Proceedings of the 26. Deutscher Flammentag, Duisburg, pp. 867–872 (2013)

    Google Scholar 

  27. Weiß, M., Zarzalis, N., Suntz, R.: Experimental study of markstein number effects on laminar flamelet velocity in turbulent premixed flames. Int. J. Heat Mass Transf. 154, 671–691 (2008)

    Google Scholar 

  28. Baust, T.: Druck- und Turbulenzeinfluss auf den Marksteinzahl-Effekt einer instationren sphrischen Flammenfront. Master’s thesis, Karlsruhe Institute of Technology (2013)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the German Research Council (DFG) through the Research Unit DFG-BO693/27 “Combustion Noise”. This research used resources of the High Performance Computing Center Stuttgart (HLRS) at the University of Stuttgart, Germany. The authors gratefully acknowledge assistance from these Communities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feichi Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Zhang, F., Bonart, H., Zirwes, T., Habisreuther, P., Bockhorn, H., Zarzalis, N. (2015). Direct Numerical Simulation of Chemically Reacting Flows with the Public Domain Code OpenFOAM. In: Nagel, W., Kröner, D., Resch, M. (eds) High Performance Computing in Science and Engineering ‘14. Springer, Cham. https://doi.org/10.1007/978-3-319-10810-0_16

Download citation

Publish with us

Policies and ethics