Churn Prediction in Telecommunication Industry Using Rough Set Approach

  • Adnan AminEmail author
  • Saeed Shehzad
  • Changez Khan
  • Imtiaz Ali
  • Sajid Anwar
Part of the Studies in Computational Intelligence book series (SCI, volume 572)


The Customer churn is a crucial activity in rapidly growing and mature competitive telecommunication sector and is one of the greatest importance for a project manager. Due to the high cost of acquiring new customers, customer churn prediction has emerged as an indispensable part of telecom sectors’ strategic decision making and planning process. It is important to forecast customer churn behavior in order to retain those customers that will churn or possible may churn. This study is another attempt which makes use of rough set theory, a rule-based decision making technique, to extract rules for churn prediction. Experiments were performed to explore the performance of four different algorithms (Exhaustive, Genetic, Covering, and LEM2). It is observed that rough set classification based on genetic algorithm, rules generation yields most suitable performance out of the four rules generation algorithms. Moreover, by applying the proposed technique on publicly available dataset, the results show that the proposed technique can fully predict all those customers that will churn or possibly may churn and also provides useful information to strategic decision makers as well.


Churn Prediction Rough Set Theory Classification 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hadden, J., Tiwari, A., Roy, R., Rute, D.: Computer assisted customer churn management: State-of-theart and future trends. IJCOR 10, 2902–2917 (2007)Google Scholar
  2. 2.
    Sharma, A., Kumar, P.: A Neural Network based Approach for Predicting Customer Churn in Cellular Network Services. IJCSA Application 27, 0975–8887 (2011)Google Scholar
  3. 3.
    Wouter, V., David, M., Christophe, M., Bart, B.: Building comprehensible customer churn prediction models with advance rule induction techniques. Expert Systems with Applications 38, 2354–2364 (2011)CrossRefGoogle Scholar
  4. 4.
    Kirui, C., Hong, L., Wilson, C., Kirui, H.: Predicting Customer Churn in Mobile Telephony Industry Using Probabilistic Classifiers in Data Mining. IJCS 10 (2013)Google Scholar
  5. 5.
    Huang, B., Kechadi, M.T., Buckley, B.: Customer churn prediction in telecommunications. Expert Systems with Applications 39, 1414–1425 (2012)CrossRefGoogle Scholar
  6. 6.
    Lina, C.S., Gwo-Hshiung, T., Yang Chieh, C.: Combined rough set theory and flow network graph to predict customer churn in credit card accounts. Expert System with Application 38, 8–15 (2011)CrossRefGoogle Scholar
  7. 7.
    Yan, L., Wolniewicz, R.H., Dodier, R.: Predicting customer behavior in telecommunications. IEEE Intelligent Systems 2, 50–58 (2004)CrossRefGoogle Scholar
  8. 8.
    Lazarov, V., Capota, M.: Churn Prediction, Business Analytics Course. TUM Computer Science (2007)Google Scholar
  9. 9.
    Den Poel, D.V., Lariviere, B.: Customer attrition analysis for financial services using proportional hazard models. European Journal of Operational Research, 196–217 (2004)Google Scholar
  10. 10.
    Chitra, K., Subashini, B.: Customer Retention in Banking Sector using Predictive Data Mining Technique. In: ICIT (2011)Google Scholar
  11. 11.
    Devi, P., Madhavi, S.: Prediction of Churn Behavior of Bank Customers Using Data Mining Tools. Business Intelligence Journal 5 (2012)Google Scholar
  12. 12.
    Tiwari, J., Hadden, A., Roy, R., Ruta, D.: Churn Prediction using Complaints Data. International Journal of Intelligent Technology 13, 158–163 (2006)Google Scholar
  13. 13.
    Lee, K.C., Chung, N.H., Kim, J.K.: A fuzzy cognitive map approach to integrating explicit knowledge and tacit knowledge: Emphasis on the churn analysis of credit card holders. Information Systems Review 11, 113–133 (2001)Google Scholar
  14. 14.
    Kawale, J., Aditya, Srivastava, J.: Churn prediction in MMORPGs: A social influence based approach. IEEE Computational Science and Engineering 4 (2009)Google Scholar
  15. 15.
    Suznjevic, M., Stupar, L., Matijasevic, M.: MMORPG player behavior model based on player action categories. In: 10th Workshop on NSSG. IEEE Press (2011)Google Scholar
  16. 16.
    Liou, J.J.H.: A novel decision rules approach for customer relationship management of the airline market. Journal of Expert Systems with Applications (2008)Google Scholar
  17. 17.
    Oentaryo, R.J., Lim, E.-P., Lo, D., Zhu, F., Prasetyo, P.K.: Collective Churn Prediction in Social Network. In: ASONAM. IEEE/ACM (2012)Google Scholar
  18. 18.
    Guo, L., Tan, E., Chen, S., Zhang, X., Zhao, Y.E.: Analyzing patterns of user content generation in online social networks. In: The 15th ACM SIGKDD, pp. 369–378 (2009)Google Scholar
  19. 19.
    Soeini, R.A., Keyvan, V.R.: Proceedings of Computer Science & Information Technology 30 (2012)Google Scholar
  20. 20.
    Burez, J., Van den Poel, D.: Handling class imbalance in customer churn prediction. Expert Systems with Applications 36, 4626–4636 (2009)CrossRefGoogle Scholar
  21. 21.
    Ahn, J.-H., Han, S.P., Lee, Y.-S.: Customer churn analysis: Churn determinants and mediation effects of partial defection in the Korean mobile telecommunications service industry. Telecommunications Policy 30, 552–568 (2006)CrossRefGoogle Scholar
  22. 22.
    Kim, M.K., Jeong, D.H.: The effects of customer satisfaction and switching barriers on customer loyalty in Korean mobile telecommunication services. Telecom Policy 28,145–159 (2004)Google Scholar
  23. 23.
    Shaaban, E., Helmy, Y., Khedr, A., Nasr, M.: A Proposed Churn Prediction Model. IJERA 2, 693–697 (2012)Google Scholar
  24. 24.
    Qureshi, S.A., Rehman, A.S., Qamar, A.M., Kamal, A., Rehman, A.: Telecommunication Subscribers’ Churn Prediction Model Using Machine Learning. IEEE (2013)Google Scholar
  25. 25.
    Kirui, C., Li, H., Cheruiyot, W., Kirui, H.: Predicting customer churn in mobile telephony industry using probabilistic classifiers in data mining. IJCSA 10, 1694–1814 (2013)Google Scholar
  26. 26.
    Innut, B., Churn, G.T.: Prediction in the telecommunications sector using support vector machines. Annals of Oradea University Fascicle of Mgt & Technological Engineering (2013)Google Scholar
  27. 27.
    Au, W.H., Chan, K.C., Yao, X.: A novel evolutionary data mining algorithm with applications to churn prediction. IEEE Trans. 7, 532–545 (2003)Google Scholar
  28. 28.
    Hossein, A., Mostafa, S., Tarokh, M.J.: The Application of Neuro-Fuzzy Classifier for Customer Churn Prediction. Procedia Information Technology & Computer Science 1, 1643–1648 (2012)Google Scholar
  29. 29.
    Farquad, M.A., Vadlamani, R., Raju, B.: Churn Prediction using comprehensible support vector machine: An Analytical CRM application. Elsevier Applied Soft Computing 19, 31–40 (2014)CrossRefGoogle Scholar
  30. 30.
    Mozer, M., Wolniewicz, R., Grimes, D., Johnson, E., Kaushansky, H.: Predicting subscriber dissatisfaction and improving retention in the wireless telecommunications industry. IEEE Transactions on Neural Networks 11, 690–696 (2000)CrossRefGoogle Scholar
  31. 31.
    Pawlak, Z.: Rough sets, rough relations and rough functions. Fundamenta informaticae 27, 103–108 (1996)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Pawlak, Z.: Rough sets. International Journal of Computer and Information Science 5, 341–356 (1982)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Zdzislaw, P.: Rough Set: theoretical aspects of reasoning about data. Kluwer Academic Publishers, Dordrecht (1991)Google Scholar
  34. 34.
    Bazan, J., Szczuka, M.S.: The rough set exploration system. In: Peters, J.F., Skowron, A. (eds.) Transactions on Rough Sets III. LNCS, vol. 3400, pp. 37–56. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  35. 35.
    Nguyen, H.S., Nguyen, S.H.: Analysis of stulong data by rough set exploration system (RSES). In: Proceedings of the ECML/PKDD Workshop (2003)Google Scholar
  36. 36.
    Bazan, J., Nguyen, H.S., Nguyen, S. H., Synak, P., Wróblewski, J.: Rough Set Algorithms in Classification Problem, pp. 49–88. Physica-Verlag, Heidelberg (2000)Google Scholar
  37. 37.
    Wroblewski, J.: Genetic algorithms in decomposition and classification problem. In: Skowron, A., Polkowski, L. (eds.) Rough Sets in Knowledge Discovery 1, pp. 471–487. Physica Verlag, Heidelberg (1998)CrossRefGoogle Scholar
  38. 38.
    Grzymala-Busse, J.: A New Version of the Rule Induction System LERS. Fundamenta Informaticae 31, 27–39 (1997)zbMATHGoogle Scholar
  39. 39.
    Burez, J.D., Van den Poel: Handling class imbalance in customer churn prediction. Expert Systems with Applications 36, 4626–4636 (2009)CrossRefGoogle Scholar
  40. 40.
    Vandecruys, O., Martens, D., Baesens, B., Mues, C., De Backer, M., Haesen: Mining software repositories for comprehensible software fault prediction models. Journal of Systems and Software 81, 823–839 (2008)CrossRefGoogle Scholar
  41. 41.
  42. 42.
    Holmes, G., Donkin, A., Witten, I.H.: Weka: A machine learning workbench. In: Proceedings of the IEEE Intelligent Information Systems (1994)Google Scholar
  43. 43.
    John, H.: A Customer Profiling Methodology for Churn Prediction. P.hD thesis at Cranfield University (2008)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Adnan Amin
    • 1
    Email author
  • Saeed Shehzad
    • 2
  • Changez Khan
    • 1
  • Imtiaz Ali
    • 1
  • Sajid Anwar
    • 1
  1. 1.Institute of Management Sciences PeshawarPeshawarPakistan
  2. 2.City University of Science and TechnologyPeshawarPakistan

Personalised recommendations