Using Changes in Distribution to Identify Synchronized Point Processes

  • Christian BrauneEmail author
  • Stephan Besecke
  • Rudolf Kruse
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 315)


In neurobiology the analysis of spike trains is of particular interest. Spike trains can be seen as point processes generated by neurons emitting signals to communicate with other neurons. According to Hebb’s seminal work on neural encoding information is processed in the brain in ensembles of neurons that reveal themselves by synchronized behaviour. One of the many competing hypotheses to explain this synchrony is the spike-time-synchrony hypothesis. The relative timing of spikes emitted by different neurons should explain the processing of information. In this paper we present a novel method to decide for each single neuron whether it is part of (at least) one assembly by analyzing changes in the distribution of spiking patterns.


point processes distribution change spike train analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Berger, D., Borgelt, C., Louis, S., Morrison, A., Grün, S.: Efficient identification of assembly neurons within massively parallel spike trains. Computational Intelligence and Neuroscience 1 (2010)Google Scholar
  2. 2.
    Borgelt, C., Braune, C.: Prototype construction for clustering of point processes based on imprecise synchrony. In: 8th Conference of the European Society for Fuzzy Logic and Technology (EUSFLAT 2013). Atlantis Press (2013)Google Scholar
  3. 3.
    Braune, C., Borgelt, C., Kruse, R.: Behavioral clustering for point processes. In: Tucker, A., Höppner, F., Siebes, A., Swift, S. (eds.) IDA 2013. LNCS, vol. 8207, pp. 127–137. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  4. 4.
    Gerstein, G.L., Perkel, D.H., Subramanian, K.: Identification of functionally related neural assemblies. Brain Research 140(1), 43–62 (1978)CrossRefGoogle Scholar
  5. 5.
    Grün, S., Abeles, M., Diesmann, M.: Impact of higher-order correlations on coincidence distributions of massively parallel data. In: Marinaro, M., Scarpetta, S., Yamaguchi, Y. (eds.) Dynamic Brain - from Neural Spikes to Behaviors. LNCS, vol. 5286, pp. 96–114. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    Grün, S., Diesmann, M., Aertsen, A.: Unitary events in multiple single-neuron spiking activity: I. detection and significance. Neural Computation 14(1), 43–80 (2002)CrossRefzbMATHGoogle Scholar
  7. 7.
    Hebb, D.O.: The organization of behavior: a neuropsychological theory. Wiley (1949)Google Scholar
  8. 8.
    Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of Physiology 117(4), 500 (1952)Google Scholar
  9. 9.
    Louis, S., Borgelt, C., Gruen, S.: Complexity distribution as a measure for assembly size and temporal precision. Neural Networks 23(6), 705–712 (2010)CrossRefGoogle Scholar
  10. 10.
    Picado-Muiño, D., Borgelt, C., Berger, D., Gerstein, G., Grün, S.: Finding neural assemblies with frequent item set mining. Frontiers in Neuroinformatics 7 (2013)Google Scholar
  11. 11.
    Staude, B., Gruen, S., Rotter, S.: Higher-order correlations in non-stationary parallel spike trains: Statistical modeling and inference. Frontiers in Computational Neuroscience 4(16) (2010)Google Scholar
  12. 12.
    Staude, B., Rotter, S., Gruen, S.: Cubic: Cumulant based inference of higher-order correlations in massively parallel spike trains. Journal of Computational Neuroscience 29(1-2), 327–350 (2010)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Christian Braune
    • 1
    Email author
  • Stephan Besecke
    • 1
  • Rudolf Kruse
    • 1
  1. 1.Otto-von-Guericke-University of MagdeburgMagdeburgGermany

Personalised recommendations