Advertisement

Combining Evolutionary Computation and Algebraic Constructions to Find Cryptography-Relevant Boolean Functions

  • Stjepan Picek
  • Elena Marchiori
  • Lejla Batina
  • Domagoj Jakobovic
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8672)

Abstract

Boolean functions play a central role in security applications because they constitute one of the basic primitives for modern cryptographic services. In the last decades, research on Boolean functions has been boosted due to the importance of security in many diverse public systems relying on such technology. A main focus is to find Boolean functions with specific properties. An open problem in this context is to find a balanced Boolean function with an 8-bit input and nonlinearity 118. Theoretically, such a function has been shown to exist, but it has not been found yet. In this work we focus on specific classes of Boolean functions, and analyze the landscape of results obtained by integrating algebraic and evolutionary computation (EC) based approaches. Results indicate that combinations of these approaches give better results although not reaching 118 nonlinearity.

Keywords

Boolean Functions Nonlinearity Evolutionary Computation Bent Functions Cryptographic Properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Braeken, A.: Cryptographic Properties of Boolean Functions and S-Boxes. PhD thesis, Katholieke Universiteit Leuven (2006)Google Scholar
  2. 2.
    Burnett, L.D.: Heuristic Optimization of Boolean Functions and Substitution Boxes for Cryptography. PhD thesis, Queensland University of Technology (2005)Google Scholar
  3. 3.
    Cid, C., Kiyomoto, S., Kurihara, J.: The RAKAPOSHI Stream Cipher. In: Qing, S., Mitchell, C.J., Wang, G. (eds.) ICICS 2009. LNCS, vol. 5927, pp. 32–46. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  4. 4.
    Millan, W., Fuller, J., Dawson, E.: New concepts in evolutionary search for boolean functions in cryptology. Computational Intelligence 20(3), 463–474 (2004)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Sarkar, P., Maitra, S.: Construction of nonlinear boolean functions with important cryptographic properties. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 485–506. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  6. 6.
    Sarkar, P., Maitra, S.: Nonlinearity bounds and constructions of resilient boolean functions. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 515–532. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  7. 7.
    Zheng, Y., Zhang, X.-M.: Improved upper bound on the nonlinearity of high order correlation immune functions. In: Stinson, D.R., Tavares, S. (eds.) SAC 2000. LNCS, vol. 2012, pp. 262–274. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. 8.
    Pasalic, E., Maitra, S., Johansson, T., Sarkar, P.: New constructions of resilient and correlation immune boolean functions achieving upper bound on nonlinearity. Electronic Notes in Discrete Mathematics 6, 158–167 (2001)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Aguirre, H., Okazaki, H., Fuwa, Y.: An Evolutionary Multiobjective Approach to Design Highly Non-linear Boolean Functions. In: Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2007, pp. 749–756 (2007)Google Scholar
  10. 10.
    Clark, J.A., Jacob, J.L., Stepney, S., Maitra, S., Millan, W.: Evolving Boolean Functions Satisfying Multiple Criteria. In: Menezes, A., Sarkar, P. (eds.) INDOCRYPT 2002. LNCS, vol. 2551, pp. 246–259. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  11. 11.
    Picek, S., Jakobovic, D., Golub, M.: Evolving Cryptographically Sound Boolean Functions. In: GECCO (Companion), pp. 191–192 (2013)Google Scholar
  12. 12.
    Adams, C., Tavares, S.: Generating and counting binary bent sequences. IEEE Transactions on Information Theory 36(5), 1170–1173 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Jakobovic, D., et al.: Evolutionary computation framework (December 2013), http://gp.zemris.fer.hr/ecf/
  14. 14.
    Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. Springer, Heidelberg (2003)CrossRefzbMATHGoogle Scholar
  15. 15.
    Yao, X.: Optimization by genetic annealing. In: Proc. of 2nd Australian Conf. on Neural Networks, pp. 94–97 (1991)Google Scholar
  16. 16.
    Fuller, J., Dawson, E., Millan, W.: Evolutionary generation of bent functions for cryptography. In: The 2003 Congress on Evolutionary Computation, CEC 2003, vol. 3, pp. 1655–1661 (December 2003)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Stjepan Picek
    • 1
    • 2
  • Elena Marchiori
    • 1
  • Lejla Batina
    • 1
  • Domagoj Jakobovic
    • 2
  1. 1.Institute for Computing and Information SciencesRadboud University NijmegenNijmegenThe Netherlands
  2. 2.Faculty of Electrical Engineering and ComputingUniversity of ZagrebZagrebCroatia

Personalised recommendations