Application of Evolutionary Methods to Semiconductor Double-Chirped Mirrors Design

  • Rafał Biedrzycki
  • Jarosław Arabas
  • Agata Jasik
  • Michał Szymański
  • Paweł Wnuk
  • Piotr Wasylczyk
  • Anna Wójcik-Jedlińska
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8672)


This paper reports on a successful application of evolutionary computation techniques to the computer aided design of a dedicated highly dispersive mirror which is used in an ultrafast laser. The mirror is a GaAs plate coated with many interleaving layers of GaAs/AlAs and SiO2/Si3N4 layers whose thickness undergo optimization. We report and compare results obtained by leading global optimization techniques: Covariance Matrix Adaptation Evolution Strategy and Differential Evolution, as well as few efficient local optimization methods: Nelder-Mead and variable metric. The evolutionary designed mirror has been manufactured by the Molecular Beam Epitaxy technology and the measurements confirmed successful implementation of the instrument.


CMA-ES Differential Evolution Double Chirped Mirror 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Liang, J., et al.: Problem definitions and evaluation criteria for the CEC 2013 special session on real-parameter optimization. Technical report, Comp. Intell. Lab., Zhengzhou University and Nanyang Technological University (2013)Google Scholar
  2. 2.
    INRIA: Black-box optimization benchmarking (BBOB) (2013),
  3. 3.
    R Core Team: R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2013)Google Scholar
  4. 4.
    Ardia, D., et al.: DEoptim: Differential Evolution in R (2013), Package ver. 2.2-2Google Scholar
  5. 5.
    Trautmann, H., Mersmann, O., Arnu, D.: cmaes: Covariance Matrix Adapting Evolutionary Strategy (2011) R package version 1.0-11Google Scholar
  6. 6.
    Storn, R.: Differential evolution research – trends and open questions. In: Chakraborty, U. (ed.) Advances in Differential Evolution. SCI, vol. 143, pp. 1–31. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution strategies. Evol. Comput. 9(2), 159–195 (2001)CrossRefGoogle Scholar
  8. 8.
    Hansen, N., et al.: Comparing results of 31 algorithms from the black-box optimization benchmarking BBOB-2009. In: GECCO, pp. 1689–1696. ACM (2010)Google Scholar
  9. 9.
    Weiler, S.: Ultrafast lasers-high-power pico-and femtosecond lasers enable new applications. Laser Focus World 47(10), 55 (2011)Google Scholar
  10. 10.
    Braun, M., Gilch, P., Zinth, W.: Ultrashort laser pulses in biology and medicine. Springer (2008)Google Scholar
  11. 11.
    Keller, U.: Recent developments in compact ultrafast lasers. Nature 424(6950), 831–838 (2003)CrossRefGoogle Scholar
  12. 12.
    Matuschek, N.: Theory and design of double-chirped mirrors. PhD thesis, ETH Zürich (1999)Google Scholar
  13. 13.
    Marcuse, D.: Theory of dielectric optical waveguides. Academic, New York (1974)Google Scholar
  14. 14.
    Bialynicki-Birula, I., Cieplak, M., Kaminski, J.: Theory of quanta. Oxford University Press, New York (1992)Google Scholar
  15. 15.
    Chilwell, J., Hodgkinson, I.: Thin-films field-transfer matrix theory of planar multilayer waveguides and reflection from prism-loaded waveguides. JOSA A 1(7), 742–753 (1984)CrossRefGoogle Scholar
  16. 16.
    Yakovlev, V., Tempea, G.: Optimization of chirped mirrors. Applied Optics 41(30), 6514–6520 (2002)CrossRefGoogle Scholar
  17. 17.
    Yan-Zhi, W., et al.: Design and fabrication of chirped mirror. Chinese Physics Letters 26(9) (2009)Google Scholar
  18. 18.
    Tikhonravov, A.V.: Needle optimization technique: the history and the future. In: Optical Science, Engineering and Instrumentation 1997, International Society for Optics and Photonics, pp. 2–7 (1997)Google Scholar
  19. 19.
    Pervak, V., et al.: High-dispersive mirrors for femtosecond lasers. Optics Express 16(14), 10220–10233 (2008)CrossRefGoogle Scholar
  20. 20.
    Adamski, K.: Evolutionary algorithm versus variable metric method in digital FIR filter design. In: EUROCON 2007, pp. 116–121 (2007)Google Scholar
  21. 21.
    Arabas, J., Miazga, P.: Computer aided design of a layout of planar circuits by means of evolutionary algorithms. CIT. Journal of Computing and Information Technology 7(1), 61–76 (1999)Google Scholar
  22. 22.
    Rios, L., Sahinidis, N.: Derivative-free optimization: a review of algorithms and comparison of software implementations. Journal of Global Optimization 56(3), 1247–1293 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Bihorel, S., Baudin, M.: Neldermead: R port of the Scilab neldermead module (2014), R package version 1.0-8Google Scholar
  24. 24.
    Zhu, C., et al.: Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization. ACM Trans. Math. Softw. 23(4), 550–560 (1997)CrossRefzbMATHGoogle Scholar
  25. 25.
    Hansen, N.: CMA-ES source code (2014),
  26. 26.
    Varadhan, R., Borchers, H.W.: dfoptim: derivative-free optimization (2011), R package version 2011.8-1Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Rafał Biedrzycki
    • 1
  • Jarosław Arabas
    • 1
  • Agata Jasik
    • 2
  • Michał Szymański
    • 2
  • Paweł Wnuk
    • 3
  • Piotr Wasylczyk
    • 3
  • Anna Wójcik-Jedlińska
    • 2
  1. 1.Institute of Electronic SystemsWarsaw University of TechnologyPoland
  2. 2.Institute of Electron TechnologyWarsawPoland
  3. 3.Faculty of Physics, Institute of Experimental PhysicsUniversity of WarsawPoland

Personalised recommendations