Advertisement

A Geometrical Approach to the Incompatible Substructure Problem in Parallel Self-Assembly

  • Navneet Bhalla
  • Dhananjay Ipparthi
  • Eric Klemp
  • Marco Dorigo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8672)

Abstract

The inherent massive parallelism of self-assembly is one of its most appealing attributes for autonomous construction. One challenge in parallel self-assembly is to reduce the number of incompatible substructures that can occur in order to increase the yield in target structures. Early studies demonstrated how a simple approach to component design led components to self-assemble into incompatible substructures. Approaches have been proposed to reduce the number of incompatible substructures by increasing component complexity (e.g. using mechanical switches to determine substructure conformation). In this work, we show how a geometrical approach to self-assembling target structures from the inside-out eliminates incompatible substructures and increases yield. The advantages of this approach includes the simplicity of component design, and the incorporation of additional techniques to reduce component interaction errors. An experiment using millimeter-scale, 3D printed components is used to provide physical evidence to support our geometrical approach.

Keywords

Self-assembly parallelism yield mesoscale 3D printing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barish, R.D., Schulman, R., Rothemund, P.W.K., Winfree, E.: An information-bearing seed for nucleating algorithmic self-assembly. Proc. Natl. Acad. Sci. U.S.A. 106(15), 6054–6059 (2009)CrossRefGoogle Scholar
  2. 2.
    Bhalla, N., Bentley, P.J., Vize, P.D., Jacob, C.: Staging the self-assembly process: Inspiration from biological development. Artificial Life 20(1), 29–53 (2014)CrossRefGoogle Scholar
  3. 3.
    Bhalla, N., Ipparthi, D., Klemp, E., Dorigo, M.: A geometrical approach to the incompatible substructure problem in parallel self-assembly: supplementary material. Tech. Rep. TR/IRIDIA/2014-010, IRIDIA, Université Libre de Bruxelles, Brussels, Belgium (2014)Google Scholar
  4. 4.
    Dagliyan, O., Shirvanyants, D., Karginov, A.V., Dinga, F., Feea, L., Chandrasekarana, S.N., Freisingerd, C.M., Smolend, G.A., Huttenlocherd, A., Hahnc, K.M., Dokholyana, N.V.: Rational design of a ligand-controlled protein conformational switch. Proc. Natl. Acad. Sci. U.S.A. 110(17), 6800–6804 (2013)CrossRefGoogle Scholar
  5. 5.
    Gautam, V.K., Haddow, P.C., Kuiper, M.: Reliable self-assembly by self-triggered activation of enveloped DNA tiles. In: Dediu, A.-H., Martín-Vide, C., Truthe, B., Vega-Rodríguez, M.A. (eds.) TPNC 2013. LNCS, vol. 8273, pp. 68–79. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  6. 6.
    Hettmansperger, T.P., McKean, J.W.: Robust nonparametric statistical methods. Chapman & Hall/CRC Press, Boca Rotan (2010)CrossRefGoogle Scholar
  7. 7.
    Hosokawa, K., Shimoyama, I., Miura, H.: Dynamics of self-assembling systems: Analogy with chemical kinetics. Artificial Life 1(4), 413–427 (1994)CrossRefGoogle Scholar
  8. 8.
    Klavins, E.: Programmable self-assembly. IEEE Control Systems Magazine 27(4), 43–56 (2007)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Mastrangeli, M., Abbasi, S., Van Hoof, C., Celis, J.P., Böhringer, K.F.: Self-assembly from milli- to nanoscales: methods and applications. Journal of Micromechanics and Microengineering 19(8), 1–37 (2009)CrossRefGoogle Scholar
  10. 10.
    Mendes, A.C., Baran, E.T., Reis, R.L., Azevedo, H.S.: Self-assembly in nature: using the principles of nature to create complex nanobiomaterials. WIREs Nanomedicine and Nanobiotechnology 5(6), 582–612 (2013)CrossRefGoogle Scholar
  11. 11.
    Miyashita, S., Nagy, Z., Nelson, B.J., Pfeifer, R.: The influence of shape on parallel self-assembly. Entropy 11(4), 643–666 (2009)CrossRefGoogle Scholar
  12. 12.
    Pelesko, J.A.: Self Assembly: The Science of Things that Put Themselves Together. Chapman & Hall/CRC Press, Boca Rotan (2007)CrossRefGoogle Scholar
  13. 13.
    Saitou, K.: Conformational switching in self-assembling mechanical systems. IEEE Transactions on Robotics and Automation 15(3), 510–520 (1999)CrossRefGoogle Scholar
  14. 14.
    Schneiter, A.A., Miller, J.F.: Description of sunflower growth stages. Crop Science 21(6), 901–903 (1981)CrossRefGoogle Scholar
  15. 15.
    Whitesides, G.M., Boncheva, M.: Beyond molecules: Self-assembly of mesoscopic and macroscopic components. Proc. Natl. Acad. Sci. U.S.A. 99(8), 4769–4774 (2002)CrossRefGoogle Scholar
  16. 16.
    Whitesides, G.M., Grzybowski, B.: Self-assembly at all scales. Science 295(5564), 2418–2421 (2002)CrossRefGoogle Scholar
  17. 17.
    Winfree, E., Liu, F., Wenzler, L.A., Seeman, N.C.: Design and self-assembly of two-dimensional DNA crystals. Nature 394, 539–544 (1998)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Navneet Bhalla
    • 1
  • Dhananjay Ipparthi
    • 2
  • Eric Klemp
    • 3
  • Marco Dorigo
    • 2
  1. 1.Cornell UniversityIthacaUSA
  2. 2.Université Libre de BruxellesBrusselsBelgium
  3. 3.University of PaderbornPaderbornGermany

Personalised recommendations