PaDe: A Parallel Algorithm Based on the MOEA/D Framework and the Island Model

  • Andrea Mambrini
  • Dario Izzo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8672)


We study a coarse grained parallelization scheme (thread based) aimed at solving complex multi-objective problems by means of decomposition. Our scheme is loosely based on the MOEA/D framework. The resulting algorithm, called Parallel Decomposition (PaDe), makes use of the asynchronous generalized island model to solve the various decomposed problems. Efficient exchange of chromosomic material among islands happens via a fixed migration topology defined by the proximity of the decomposed problem weights. Each decomposed problem is solved using a generic single objective evolutionary algorithm (in this paper we experiment with self-adaptive differential evolution (jDE)). Comparing our algorithm to MOEA/D-DE we find that it is attractive in terms of performances and, most of all, in terms of computing time. Experiments with increasing numbers of threads show that PaDe scales well, being able to fully exploit the number of underlying available cores.


Weight Vector Pareto Front Optimal Pareto Front Multiobjective Optimization Problem Island Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast elitist multi-objective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6, 182–197 (2000)CrossRefGoogle Scholar
  2. 2.
    Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the strength pareto evolutionary algorithm for multiobjective optimization. In: Proceedings of the EUROGEN 2001 Conference (2001)Google Scholar
  3. 3.
    Zhang, Q., Li, H.: MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition. IEEE Trans. Evolutionary Computation 11(6), 712–731 (2007)CrossRefGoogle Scholar
  4. 4.
    Miettinen, K.: Nonlinear Multiobjective Optimization. International series in operations research & management science. Kluwer Academic Publishers (1999)Google Scholar
  5. 5.
    Das, I., Dennis, J.: Normal-boundary intersection: An alternate method for generating pareto optimal points in multicriteria optimization problems (1996)Google Scholar
  6. 6.
    Jiang, S., Cai, Z., Zhang, J., Ong, Y.S.: Multiobjective optimization by decomposition with pareto-adaptive weight vectors. In: Seventh International Conference on Natural Computation, ICNC 2011 (2011)Google Scholar
  7. 7.
    Li, H., Zhang, Q.: Multiobjective optimization problems with complicated pareto sets, MOEA/D and NSGA-II. IEEE Transactions on Evolutionary Computation 13(2), 284–302 (2009)CrossRefGoogle Scholar
  8. 8.
    Al Moubayed, N., Petrovski, A., McCall, J.: A novel smart multi-objective particle swarm optimisation using decomposition. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) PPSN XI. LNCS, vol. 6239, pp. 1–10. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    Nebro, A.J., Durillo, J.J.: A Study of the Parallelization of the Multi-Objective Metaheuristic MOEA/D. In: Blum, C., Battiti, R. (eds.) LION 4. LNCS, vol. 6073, pp. 303–317. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  10. 10.
    Durillo, J.J., Zhang, Q., Nebro, A.J., Alba, E.: Distribution of Computational Effort in Parallel MOEA/D. In: Coello, C.A.C. (ed.) LION 2011. LNCS, vol. 6683, pp. 488–502. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  11. 11.
    Tomassini, M.: Spatially Structured Evolutionary Algorithms: Artificial Evolution in Space and Time. Springer (2005)Google Scholar
  12. 12.
    Izzo, D., Ruciński, M., Biscani, F.: The generalized island model. In: Fernandez de Vega, F., Hidalgo Pérez, J.I., Lanchares, J. (eds.) Parallel Architectures & Bioinspired Algorithms. SCI, vol. 415, pp. 151–170. Springer, Heidelberg (2012)Google Scholar
  13. 13.
    Mambrini, A., Sudholt, D., Yao, X.: Homogeneous and heterogeneous island models for the set cover problem. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds.) PPSN 2012, Part I. LNCS, vol. 7491, pp. 11–20. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  14. 14.
    PaGMO: Parallel Global Multiobjective Optimizer,
  15. 15.
    PyGMO: Python Parallel Global Multiobjective Optimizer,
  16. 16.
    Halton, J.H.: Algorithm 247: Radical-inverse quasi-random point sequence. Commun. ACM 7(12), 701–702 (1964)CrossRefGoogle Scholar
  17. 17.
    Märtens, M., Izzo, D.: The asynchronous island model and NSGA-II: study of a new migration operator and its performance. In: Proceeding of the Fifteenth Annual Conference on Genetic and Evolutionary Computation Conference, pp. 1173–1180. ACM (2013)Google Scholar
  18. 18.
    Brest, J., Zumer, V., Maucec, M.S.: Self-adaptive differential evolution algorithm in constrained real-parameter optimization. In: IEEE Congress on Evolutionary Computation, CEC 2006, pp. 215–222. IEEE (2006)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Andrea Mambrini
    • 1
  • Dario Izzo
    • 2
  1. 1.University of BirminghamBirminghamUK
  2. 2.European Space AgencyNoordwijkThe Netherlands

Personalised recommendations