Advertisement

Combining Semantically-Effective and Geometric Crossover Operators for Genetic Programming

  • Tomasz P. Pawlak
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8672)

Abstract

We propose a way to combine two distinct general patterns for designing semantic crossover operators for genetic programming: geometric semantic approach and semantically-effective approach. In the experimental part we show the synergistic effects of combining these two approaches, which we explain by a major fraction of crossover acts performed by geometric semantic crossover operators being semantically ineffective. The results of the combined approach show significant improvement of performance and high resistance to a premature convergence.

Keywords

Semantics taxonomy neutrality brood selection experiment 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Al-Sakran, S.H., Koza, J.R., Jones, L.W.: Automated re-invention of a previously patented optical lens system using genetic programming. In: Keijzer, M., Tettamanzi, A.G.B., Collet, P., van Hemert, J., Tomassini, M. (eds.) EuroGP 2005. LNCS, vol. 3447, pp. 25–37. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Beadle, L., Johnson, C.: Semantically driven crossover in genetic programming. In: IEEE CEC 2008, pp. 111–116. IEEE Press (2008)Google Scholar
  3. 3.
    Beadle, L., Johnson, C.G.: Semantic analysis of program initialisation in genetic programming. Genetic Programming and Evolvable Machines 10(3), 307–337 (2009)CrossRefGoogle Scholar
  4. 4.
    Beadle, L., Johnson, C.G.: Semantically driven mutation in genetic programming. In: IEEE CEC 2009, pp. 1336–1342. IEEE Press (2009)Google Scholar
  5. 5.
    Castelli, M., Castaldi, D., Giordani, I., Silva, S., Vanneschi, L., Archetti, F., Maccagnola, D.: An efficient implementation of geometric semantic genetic programming for anticoagulation level prediction in pharmacogenetics. In: Correia, L., Reis, L.P., Cascalho, J. (eds.) EPIA 2013. LNCS, vol. 8154, pp. 78–89. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  6. 6.
    D’haeseleer, P.: Context preserving crossover in genetic programming. In: IEEE CEC 1994, vol. 1, pp. 256–261. IEEE Press (1994)Google Scholar
  7. 7.
    Ferreira, C.: Genetic representation and genetic neutrality in gene expression programming. Advances in Complex Systems 5(4), 389–408 (2002)CrossRefzbMATHGoogle Scholar
  8. 8.
    Galvan-Lopez, E., et al.: Using semantics in the selection mechanism in genetic programming: A simple method for promoting semantic diversity. In: IEEE CEC 2013, vol. 1, pp. 2972–2979 (2013)Google Scholar
  9. 9.
    Harries, K., Smith, P.: Exploring alternative operators and search strategies in genetic programming. In: GP 1997, pp. 147–155. Morgan Kaufmann (1997)Google Scholar
  10. 10.
    Jackson, D.: Phenotypic diversity in initial genetic programming populations. In: Esparcia-Alcázar, A.I., Ekárt, A., Silva, S., Dignum, S., Uyar, A.Ş. (eds.) EuroGP 2010. LNCS, vol. 6021, pp. 98–109. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Kanji, G.: 100 Statistical Tests. SAGE Publications (1999)Google Scholar
  12. 12.
    Keller, R.E., Banzhaf, W.: Genetic programming using genotype-phenotype mapping from linear genomes into linear phenotypes. In: GP 1996, pp. 116–122. MIT Press (1996)Google Scholar
  13. 13.
    Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)zbMATHGoogle Scholar
  14. 14.
    Koza, J.R., et al.: Genetic Programming 3: Darwinian Invention and Problem Solving. Morgan Kaufman (April 1999)Google Scholar
  15. 15.
    Koza, J.R., et al.: Genetic Programming IV: Routine Human-Competitive Machine Intelligence. Kluwer Academic Publishers (2003)Google Scholar
  16. 16.
    Krawiec, K., Lichocki, P.: Approximating geometric crossover in semantic space. In: GECCO 2009, pp. 987–994. ACM (2009)Google Scholar
  17. 17.
    Krawiec, K., Pawlak, T.: Quantitative analysis of locally geometric semantic crossover. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds.) PPSN 2012, Part I. LNCS, vol. 7491, pp. 397–406. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  18. 18.
    Krawiec, K., Pawlak, T.: Approximating geometric crossover by semantic backpropagation. In: GECCO 2013, pp. 941–948. ACM (2013)Google Scholar
  19. 19.
    Krawiec, K., Pawlak, T.: Locally geometric semantic crossover: A study on the roles of semantics and homology in recombination operators. Genetic Programming and Evolvable Machines 14(1), 31–63 (2013)CrossRefGoogle Scholar
  20. 20.
    Langdon, W.B.: Size fair and homologous tree genetic programming crossovers. Genetic Programming and Evolvable Machines 1(1/2), 95–119 (2000)CrossRefzbMATHGoogle Scholar
  21. 21.
    Lohn, J., Hornby, G., Linden, D.: An evolved antenna for deployment on Nasa’s Space Technology 5 Mission. In: Genetic Programming Theory and Practice II, ch. 18, pp. 301–315. Springer (2004)Google Scholar
  22. 22.
    Luke, S.: The ECJ Owner’s Manual – A User Manual for the ECJ Evolutionary Computation Library, zeroth edition, online version 0.2 edition (October 2010)Google Scholar
  23. 23.
    McDermott, J., et al.: Genetic programming needs better benchmarks. In: GECCO 2012, pp. 791–798. ACM (2012)Google Scholar
  24. 24.
    Moraglio, A.: Abstract convex evolutionary search. In: FOGA XI, pp. 151–162. ACM (2011)Google Scholar
  25. 25.
    Moraglio, A., Krawiec, K., Johnson, C.G.: Geometric semantic genetic programming. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds.) PPSN 2012, Part I. LNCS, vol. 7491, pp. 21–31. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  26. 26.
    Nguyen, Q.U., Nguyen, X.H., O’Neill, M.: Semantics based mutation in genetic programming: The case for real-valued symbolic regression. In: Mendel 2009, pp. 73–91 (2009)Google Scholar
  27. 27.
    Pawlak, T.P., Wieloch, B., Krawiec, K.: Semantic backpropagation for designing search operators in genetic programming. IEEE Transactions on Evolutionary Computation (2014)Google Scholar
  28. 28.
    Poli, R., Langdon, W.B.: Schema theory for genetic programming with one-point crossover and point mutation. Evolutionary Computation 6(3), 231–252 (1998)CrossRefGoogle Scholar
  29. 29.
    Poli, R., Langdon, W.B., McPhee, N.F.: A field guide to genetic programming. Lulu Enterprises, UK Ltd. (2008)Google Scholar
  30. 30.
    Uy, N.Q., et al.: Semantically-based crossover in genetic programming: Application to real-valued symbolic regression. Genetic Programming and Evolvable Machines 12(2), 91–119 (2011)CrossRefGoogle Scholar
  31. 31.
    Uy, N.Q., et al.: On the roles of semantic locality of crossover in genetic programming. Information Sciences 235, 195–213 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Vanneschi, L., Castelli, M., Silva, S.: A survey of semantic methods in genetic programming. Genetic Programming and Evolvable Machines (online first)Google Scholar
  33. 33.
    Walker, J.A., Miller, J.F.: Investigating the performance of module acquisition in cartesian genetic programming. In: GECCO 2005, vol. 2, pp. 1649–1656. ACM Press (2005)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Tomasz P. Pawlak
    • 1
  1. 1.Institute of Computing SciencePoznan University of TechnologyPoznańPoland

Personalised recommendations