Advertisement

Viability Principles for Constrained Optimization Using a (1+1)-CMA-ES

  • Andrea Maesani
  • Dario Floreano
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8672)

Abstract

Viability Evolution is an abstraction of artificial evolution which operates by eliminating candidate solutions that do not satisfy viability criteria. Viability criteria are defined as boundaries on the values of objectives and constraints of the problem being solved. By adapting these boundaries it is possible to drive the search towards desired regions of solution space, discovering optimal solutions or those satisfying a set of constraints. Although in previous work we demonstrated the feasibility of the approach by implementing it on a simple genetic algorithm, the method was clearly not competitive with the current evolutionary computation state-of-the-art. In this work, we test Viability Evolution principles on a modified (1+1)-CMA-ES for constrained optimization. The resulting method shows competitive performance when tested on eight unimodal problems.

Keywords

Stochastic optimisation constrained optimisation evolution strategy viability evolution constraint handling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mezura-Montes, E., Coello Coello, C.A.: Constraint-handling in nature-inspired numerical optimization: Past, present and future. Swarm and Evolutionary Computation 1(4), 173–194 (2011)CrossRefGoogle Scholar
  2. 2.
    Runarsson, T.P.: Stochastic ranking for constrained evolutionary optimization. IEEE Transactions on Evolutionary Computation 4(3), 284–294 (2000)CrossRefGoogle Scholar
  3. 3.
    Takahama, T., Sakai, S.: Constrained optimization by the ε constrained differential evolution with an archive and gradient-based mutation. In: IEEE Congress on Evolutionary Computation (CEC 2010), pp. 1–9. IEEE Press (2010)Google Scholar
  4. 4.
    Deb, K.: An efficient constraint handling method for genetic algorithms. Computer Methods in Applied Mechanics and Engineering 186(2-4), 311–338 (2000)CrossRefzbMATHGoogle Scholar
  5. 5.
    Hansen, N., Müller, S.D., Koumoutsakos, P.: Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES). Evolutionary Computation 11(1), 1–18 (2003)CrossRefGoogle Scholar
  6. 6.
    Hansen, N., Auger, A., Ros, R., Finck, S., Pošík, P.: Comparing results of 31 algorithms from the black-box optimization benchmarking BBOB-2009. In: Proceedings of the 12th Annual Conference on Genetic and Evolutionary Computation (GECCO 2010), pp. 1689–1696. ACM Press (2010)Google Scholar
  7. 7.
    Kramer, O., Schwefel, H.: On three new approaches to handle constraints within evolution strategies. Natural Computing 5(4), 1–22 (2006)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Mattiussi, C., Floreano, D.: Viability Evolution: Elimination and Extinction in Evolutionary Computation. Technical Report (April 2003)Google Scholar
  9. 9.
    Maesani, A., Fernando, P.R., Floreano, D.: Artificial evolution by viability rather than competition. Plos One 9(1), e86831 (2014)CrossRefGoogle Scholar
  10. 10.
    Arnold, D.V., Hansen, N.: A (1+1)-CMA-ES for constrained optimisation. In: Proceedings of the Fourteenth International Conference on Genetic and Evolutionary Computation Conference (GECCO 2012), pp. 297–304. ACM Press (2012)Google Scholar
  11. 11.
    Schwefel, H.-P.P.: Evolution and optimum seeking: the sixth generation. John Wiley & Sons, Chichester (1993)Google Scholar
  12. 12.
    Hoffmeister, F., Sprave, J.: Problem-Independent Handling of Constraints by Use of Metric Penalty Functions. In: Proceedings of the Fifth Annual Conference on Evolutionary Programming, pp. 289–294. MIT Press (1996)Google Scholar
  13. 13.
    Oyman, A., Deb, K., Beyer, H.G.: An alternative constraint handling method for evolution strategies. In: Proceedings of the 1999 IEEE Congress on Evolutionary Computation, pp. 612–619. IEEE Press (1999)Google Scholar
  14. 14.
    Collange, G., Delattre, N., Hansen, N., Quinquis, I., Schoenauer, M.: Multidisciplinary Optimization in the Design of Future Space Launchers. In: Multidisciplinary Design Optimization in Computational Mechanics, pp. 487–496. John Wiley & Sons, Inc. (2010)Google Scholar
  15. 15.
    Kramer, O., Schlachter, U., Spreckels, V.: An adaptive penalty function with meta-modeling for constrained problems. In: IEEE Congress on Evolutionary Computation (CEC 2013), pp. 1350–1354. IEEE Press (June 2013)Google Scholar
  16. 16.
    Mezura-Montes, E., Coello Coello, C.A.: A simple multimembered evolution strategy to solve constrained optimization problems. IEEE Transactions on Evolutionary Computation 9(1), 1–17 (2005)CrossRefGoogle Scholar
  17. 17.
    Kusakci, A.O., Can, M.: A novel evolution strategy for constrained optimization in engineering design. In: XXIV International Conference on Information, Communication and Automation Technologies (ICAT), pp. 1–6. IEEE Press (October 2013)Google Scholar
  18. 18.
    Kramer, O., Ting, C.K., Büning, H.K.: A New Mutation Operator for Evolution Strategies for Constrained Problems. In: IEEE Congress on Evolutionary Computation (CEC 2005), vol. 3, pp. 2600–2606. IEEE Press (2005)Google Scholar
  19. 19.
    Kramer, O., Barthelmes, A., Rudolph, G.: Surrogate constraint functions for CMA evolution strategies. In: Mertsching, B., Hund, M., Aziz, Z. (eds.) KI 2009. LNCS, vol. 5803, pp. 169–176. Springer, Heidelberg (2009)Google Scholar
  20. 20.
    Gieseke, F., Kramer, O.: Towards non-linear constraint estimation for expensive optimization. In: Esparcia-Alcázar, A.I. (ed.) EvoApplications 2013. LNCS, vol. 7835, pp. 459–468. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  21. 21.
    Beyer, H.G., Finck, S.: On the Design of Constraint Covariance Matrix Self-Adaptation Evolution Strategies Including a Cardinality Constraint. IEEE Transactions on Evolutionary Computation 16(4), 578–596 (2012)CrossRefGoogle Scholar
  22. 22.
    Beyer, H.G., Schwefel, H.P.: Evolution strategies – a comprehensive introduction. Natural Computing 1(1), 3–52 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Igel, C., Suttorp, T., Hansen, N.: A Computational Efficient Covariance Matrix Update and a (1+1)-CMA for Evolution Strategies. In: Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation (GECCO 2006), pp. 453–460. ACM Press (2006)Google Scholar
  24. 24.
    Arnold, D.V., Hansen, N.: Active Covariance Matrix Adaptation for the (1+1)-CMA-ES. In: Proceedings of the 12th Annual Conference on Genetic and Evolutionary Computation (GECCO 2010), pp. 285–392. ACM Press (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Andrea Maesani
    • 1
  • Dario Floreano
    • 1
  1. 1.Laboratory of Intelligent Systems, Institute of MicroengineeringEcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland

Personalised recommendations