Advertisement

Power Distribution Network Reconfiguration by Evolutionary Integer Programming

  • Kaifeng Yang
  • Michael T. M. Emmerich
  • Rui Li
  • Ji Wang
  • Thomas Bäck
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8672)

Abstract

This paper presents and analyses new metaheuristics for solving the multiobjective (power) distribution network reconfiguration problem (DNRP). The purpose of DNRP is to minimize active power loss for single objective optimization, minimize active power loss and minimize voltage deviation for multi-objective optimization.

A non-redundant integer programming representation for the problem will be used to reduce the search space size as compared to a binary representation by several orders of magnitudes and represent exactly the feasible (cycle free, non-isolated node) networks. Two algorithmic schemes, a Hybrid Particle Swarm Optimization - Clonal Genetic Algorithm (HPCGA) and an Integer Programming Evolution Strategy (IES), will be developed for this representation and tested empirically.

Conventional algorithms for solving multi-objective DNRP are converting the multiple objective functions into a single objective function by adding weights. However, this method cannot capture the trade-offs and might fail in case of a concave Pareto front. Therefore, we extend the HPCGA and IES in order to compute Pareto fronts using selection procedures from NSGA-II and SMS-EMOA. The performance of the methods is assessed on large scale DNRPs.

Keywords

Power Distribution Network Reconfiguration Integer Programming Particle Swarm Optimization Clonal Genetic Algorithm Evolution Strategies Multiobjective Optimization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zhang, D., Fu, Z.C., Zhang, L.C.: An improved ts algorithm for loss-minimum reconfiguration in large-scale distribution systems. Electric Power Systems Research 77(5), 685–694 (2007)CrossRefGoogle Scholar
  2. 2.
    Aman, M.M., Jasmon, G.B., Naidu, K., Bakar, A.H.A., Mokhlis, H.: Discrete evolutionary programming to solve network reconfiguration problem. In: TENCON Spring 2013 Conference, pp. 505–509. IEEE, Sydney (2013)Google Scholar
  3. 3.
    Rao, R.S., Narasimham, S.V.L., Ramalingaraju, M.: Optimization of distribution network configuration for loss reduction using artificial bee colony algorithm. International Journal of Electrical Power and Energy Systems Engineering 1(2), 116–122 (2008)Google Scholar
  4. 4.
    Niknam, T., Meymand, H.Z., Mojarrad, H.D.: An efficient algorithm for multi-objective optimal operation management of distribution network considering fuel cell power plants. Energy 36(1), 119–132 (2011)CrossRefGoogle Scholar
  5. 5.
    Kasaei, M.J., Gandomkar, M.: Loss reduction in distribution network using simultaneous capacitor placement and reconfiguration with ant colony algorithm. In: Asia-Pacific Power and Energy Engineering Conference, APPEEC 2010, pp. 1–4. IEEE, Chengdu (2010)CrossRefGoogle Scholar
  6. 6.
    Qin, Y.M., Wang, J.: Distribution network reconfiguration based on particle clonal genetic algorithm. Journal of Computers 4(9), 813–820 (2009)Google Scholar
  7. 7.
    Chiou, J.P., Chang, C.F., Su, C.T.: Variable scaling hybrid differential evolution for solving network reconfiguration of distribution systems. IEEE Transactions on Power Systems 20(2), 668–674 (2005)CrossRefGoogle Scholar
  8. 8.
    Niknam, T.: A new hybrid algorithm for multi-objective distribution feeder reconfiguration. Cybernetics and Systems: An International Journal 40(6), 508–527 (2009)CrossRefGoogle Scholar
  9. 9.
    Wang, S.X., Wang, C.S.: A novel network reconfiguration algorithm implicitly including parallel searching for large-scale unbalanced distribution systems. Automation of Electric Power Systems 24(19), 34–38 (2000)Google Scholar
  10. 10.
    Ma, X.F., Zhang, L.Z.: Distribution network reconfiguration based on genetic algorithm using decimal encoding. Transactions of China Electrotechnical Society 19(10), 65–69 (2005)Google Scholar
  11. 11.
    Bi, P.X., Liu, J., Liu, C.X., Zhang, W.Y.: A refined genetic algorithm for power distribution network reconfiguration. Automation of Electric Power Systems 26(2), 57–61 (2002)Google Scholar
  12. 12.
    Poli, R., Kennedy, J., Blackwell, T.: Particle swarm optimization. Swarm Intelligence 1(1), 33–57 (2007)CrossRefGoogle Scholar
  13. 13.
    Li, M.J., Tong, T.S.: A partheno genetic algorithm and analysis on its global convergence. Automatization 25(1), 68–72 (1999)MathSciNetGoogle Scholar
  14. 14.
    Wang, J., Luo, A., Qi, M.J., Li, M.J.: The improved clonal genetic algorithm & its application in reconfiguration of distribution networks. In: Power Systems Conference and Exposition, PSCE 2004, pp. 1423–1428. IEEE, New York (2004)Google Scholar
  15. 15.
    Rudolph, G.: An evolutionary algorithm for integer programming. In: Davidor, Y., Männer, R., Schwefel, H.-P. (eds.) PPSN III. LNCS, vol. 866, pp. 139–148. Springer, Heidelberg (1994)Google Scholar
  16. 16.
    Li, R., Emmerich, M., Eggermont, J., Bäck, T., Schütz, M., Dijkstra, J., Reiber, J.H.: Mixed integer evolution strategies for parameter optimization. Evolutionary computation 21(1), 29–64 (2013)CrossRefGoogle Scholar
  17. 17.
    Zimmerman, R.D., Murillo-Sánchez, C.E., Thomas, R.J.: Matpower: Steady-state operations, planning, and analysis tools for power systems research and education. IEEE Transactions on Power Systems 26(1), 12–19 (2011)CrossRefGoogle Scholar
  18. 18.
    Anderson, M., Whitcomb, P.: Find the optimal formulation for mixtures (2002), http://www.statease.com/pubs/chem-2.pdf
  19. 19.
    Bäck, T.: Evolutionary algorithms in theory and practice: evolution strategies, evolutionary programming, genetic algorithms. Oxford University Press, New York (1996)Google Scholar
  20. 20.
    Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.A.M.T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6(2), 182–197 (2002)CrossRefGoogle Scholar
  21. 21.
    Beume, N., Naujoks, B., Emmerich, M.: SMS-EMOA: Multiobjective selection based on dominated hypervolume. European Journal of Operational Research 181(3), 1653–1669 (2007)CrossRefzbMATHGoogle Scholar
  22. 22.
    Knowles, J., Corne, D.: Properties of an adaptive archiving algorithm for storing nondominated vectors. IEEE Transactions on Evolutionary Computation 7(2), 100–116 (2003)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Kaifeng Yang
    • 1
  • Michael T. M. Emmerich
    • 1
  • Rui Li
    • 1
  • Ji Wang
    • 2
  • Thomas Bäck
    • 1
  1. 1.LIACSLeiden UniversityLeidenThe Netherlands
  2. 2.Central South UniversityChangshaChina

Personalised recommendations