Stopping Criteria for Multimodal Optimization

  • Simon Wessing
  • Mike Preuss
  • Heike Trautmann
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8672)

Abstract

Multimodal optimization requires maintenance of a good search space coverage and approximation of several optima at the same time. We analyze two constitutive optimization algorithms and show that in many cases, a phase transition occurs at some point, so that either diversity collapses or optimization stagnates. But how to derive suitable stopping criteria for multimodal optimization? Experimental results indicate that an algorithm’s population contains sufficient information to estimate the point in time when several performance indicators reach their optimum. Thus, stopping criteria are formulated based on summary characteristics employing objective values and mutation strength.

Keywords

Multimodal optimization global optimization multiobjective selection convergence detection stopping criteria 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Das, S., Maity, S., Qu, B.Y., Suganthan, P.N.: Real-parameter evolutionary multimodal optimization – a survey of the state-of-the-art. Swarm and Evolutionary Computation 1(2), 71–88 (2011)CrossRefGoogle Scholar
  2. 2.
    Wessing, S., Preuss, M., Rudolph, G.: Niching by multiobjectivization with neighbor information: Trade-offs and benefits. In: IEEE Congress on Evolutionary Computation (CEC), pp. 103–110 (2013)Google Scholar
  3. 3.
    Preuss, M., Wessing, S.: Measuring multimodal optimization solution sets with a view to multiobjective techniques. In: Emmerich, M., Deutz, A., Schütze, O., Bäck, T., Tantar, E., Tantar, A.A., Moral, P.D., Legrand, P., Bouvry, P., Coello, C.A. (eds.) EVOLVE – A Bridge between Probability, Set Oriented Numerics, and Evolutionary Computation IV. AISC, vol. 227, pp. 123–137. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  4. 4.
    Schütze, O., Esquivel, X., Lara, A., Coello Coello, C.A.: Using the averaged Hausdorff distance as a performance measure in evolutionary multiobjective optimization. IEEE Transactions on Evolutionary Computation 16(4), 504–522 (2012)CrossRefGoogle Scholar
  5. 5.
    Stoean, C., Preuss, M., Stoean, R., Dumitrescu, D.: Multimodal optimization by means of a topological species conservation algorithm. IEEE Transactions on Evolutionary Computation 14(6), 842–864 (2010)CrossRefGoogle Scholar
  6. 6.
    Beyer, H.G., Schwefel, H.P.: Evolution strategies – a comprehensive introduction. Natural Computing 1(1), 3–52 (2002)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Tran, T.D., Brockhoff, D., Derbel, B.: Multiobjectivization with NSGA-II on the noiseless BBOB testbed. In: Proceeding of the Fifteenth Annual Conference companion on Genetic and Evolutionary Computation Conference Companion, GECCO 2013 Companion, pp. 1217–1224. ACM (2013)Google Scholar
  8. 8.
    Wagner, T., Trautmann, H., Martí, L.: A taxonomy of online stopping criteria for multi-objective evolutionary algorithms. In: Takahashi, R.H.C., Deb, K., Wanner, E.F., Greco, S. (eds.) EMO 2011. LNCS, vol. 6576, pp. 16–30. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  9. 9.
    Trautmann, H., Wagner, T., Naujoks, B., Preuss, M., Mehnen, J.: Statistical methods for convergence detection of multi-objective evolutionary algorithms. Evolutionary Computation Journal 17(4), 493–509 (2009)CrossRefGoogle Scholar
  10. 10.
    Hernandez, G., Wilder, K., Nino, F., Garcia, J.: Towards a self-stopping evolutionary algorithm using coupling from the past. In: GECCO 2005: Proceedings of the 2005 Conference on Genetic and Evolutionary Computation, pp. 615–620. ACM (2005)Google Scholar
  11. 11.
    Safe, M., Carballido, J.A., Ponzoni, I., Brignole, N.B.: On stopping criteria for genetic algorithms. In: Bazzan, A.L.C., Labidi, S. (eds.) SBIA 2004. LNCS (LNAI), vol. 3171, pp. 405–413. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  12. 12.
    Zielinski, K., Laur, R.: Stopping criteria for a constrained single-objective particle swarm optimization algorithm. Informatica 31(1), 51–59 (2007)MATHGoogle Scholar
  13. 13.
    Hoos, H.H., Stützle, T.: Stochastic Local Search – Foundations and Applications. Morgan Kaufmann, San Francisco (2004)Google Scholar
  14. 14.
    Sastry, K.: Single and multiobjective genetic algorithm toolbox for Matlab in C++. Technical Report 2007017, Illinois Genetic Algorithms Laboratory, University of Illinois at Urbana-Champaign (2007)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Simon Wessing
    • 1
  • Mike Preuss
    • 2
  • Heike Trautmann
    • 2
  1. 1.Department of Computer ScienceTU DortmundGermany
  2. 2.Information Systems and Statistics GroupUniversity of MünsterGermany

Personalised recommendations