Flag Manifolds for the Characterization of Geometric Structure in Large Data Sets

  • Tim Marrinan
  • J. Ross Beveridge
  • Bruce Draper
  • Michael Kirby
  • Chris Peterson
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 103)


We propose a flag manifold representation as a framework for exposing geometric structure in a large data set. We illustrate the approach by building pose flags for pose identification in digital images of faces and action flags for action recognition in video sequences. These examples illustrate that the flag manifold has the potential to identify common features in noisy and complex datasets.


Training Sample Video Sequence Action Recognition Geodesic Distance Data Cloud 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Arias, A. Edelman, S.T. Smith, The geometry of algorithms with orthogonality constraints. SIAM J. Matrix Anal. Appl 20, 303–353 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    J.R. Beveridge, B. Draper, J-M. Chang, M. Kirby, H. Kley, C. Peterson, Principal angles separate subject illumination spaces in YDB and CMU-PIE. IEEE TPAMI 29(2), 351–363 (2008)Google Scholar
  3. 3.
    A. Björck, G.H. Golub, Numerical methods for computing angles between linear subspaces. Math. Comput. 27, 579–594 (1973)CrossRefzbMATHGoogle Scholar
  4. 4.
    J.-M. Chang, M. Kirby, H. Kley, C. Peterson, J.R. Beveridge, B. Draper, Recognition of digital images of the human face at ultra low resolution via illumination spaces, in Computer Vision – ACCV 2007, Tokyo, ed. by Y. Yagi, S.B. Kang, I.S. Kweon, H. Zha. Lecture Notes in Computer Science, vol. 4844 (Springer, 2007), pp. 733–743Google Scholar
  5. 5.
    B. Draper, M. Kirby, J. Marks, T. Marrinan, C. Peterson, A flag representation for finite collections of subspaces of mixed dimensions. Linear Algebra Appl. 451, 15–32 (2014)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    T. Geller, Seeing is not enough. Commun. ACM 54(10), 15–16 (2011)CrossRefGoogle Scholar
  7. 7.
    I.M. James, The Topology of Stiefel Manifolds. London Math Society Lecture Note Series, vol. 24 (Cambridge University Press, Cambridge/New York, 1977)Google Scholar
  8. 8.
    F. Nater, H. Grabner, L. Van Gool, Exploiting simple hierarchies for unsupervised human behavior analysis, in IEEE CVPR, San Francisco, 2010, pp. 2014–2021Google Scholar
  9. 9.
    X. Pennec, Intrinsic statistics on Riemannian manifolds: basic tools for geometric measurements. J. Math. Imaging Vis. 25, 127–154 (2006)CrossRefMathSciNetGoogle Scholar
  10. 10.
    T. Sim, S. Baker, M. Bsat The CMU pose, illumination, and expression (PIE) database, in Proceedings of 5th International Conference on Automatic Face and Gesture Recognition, Washington, D.C., 2002Google Scholar
  11. 11.
    P. Turaga, A. Veeraraghavan, A. Srivastava, R. Chellappa, Statistical computations on Grassmann and Stiefel manifolds for image and video-based recognition. IEEE TPAMI 33(11), 2273–2286 (2011)CrossRefGoogle Scholar
  12. 12.
    V.S. Varadarajan, Lie Groups, Lie Algebras, and their Representations. Graduate Texts in Mathematics, vol. 102 (Springer, New York, 1984)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Tim Marrinan
    • 1
  • J. Ross Beveridge
    • 1
  • Bruce Draper
    • 1
  • Michael Kirby
    • 1
  • Chris Peterson
    • 1
  1. 1.Colorado State UniversityFort CollinsUSA

Personalised recommendations