Advertisement

Convergence of Parareal for the Navier-Stokes Equations Depending on the Reynolds Number

  • Johannes Steiner
  • Daniel Ruprecht
  • Robert Speck
  • Rolf Krause
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 103)

Abstract

The paper presents first a linear stability analysis for the time-parallel Parareal method, using an IMEX Euler as coarse and a Runge-Kutta-3 method as fine propagator, confirming that dominant imaginary eigenvalues negatively affect Parareal’s convergence. This suggests that when Parareal is applied to the nonlinear Navier-Stokes equations, problems for small viscosities could arise. Numerical results for a driven cavity benchmark are presented, confirming that Parareal’s convergence can indeed deteriorate as viscosity decreases and the flow becomes increasingly dominated by convection. The effect is found to strongly depend on the spatial resolution.

Keywords

Reynolds Number Linear Stability Analysis Stability Domain Domain Decomposition Method Drive Cavity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Bal, On the convergence and the stability of the parareal algorithm to solve partial differential equations, in Domain Decomposition Methods in Science and Engineering, ed. by R. Kornhuber et al. Lecture Notes in Computational Science and Engineering, vol. 40 (Springer, Berlin, 2005), pp. 426–432Google Scholar
  2. 2.
    E. Celledoni, T. Kvamsdal, Parallelization in time for thermo-viscoplastic problems in extrusion of aluminium. Int. J. Numer. Methods Eng. 79(5), 576–598 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    F. Chen, J. Hesthaven, X. Zhu, On the use of reduced basis methods to accelerate and stabilize the parareal method, in Reduced Order Methods for Modeling and Computational Reduction. MS&A – Modeling, Simulation and Applications, vol. 9 (Springer, International Publishing Switzerland, 2014)Google Scholar
  4. 4.
    J. Cortial, C. Farhat, A time-parallel implicit method for accelerating the solution of non-linear structural dynamics problems. Int. J. Numer. Methods Eng. 77(4), 451–470 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    R. Croce, D. Ruprecht, R. Krause, Parallel-in-Space-and-Time Simulation of the Three-Dimensional, Unsteady Navier-Stokes Equations for Incompressible Flow. Modeling, Simulation and Optimization of Complex Processes (Springer, Berlin/Heidelberg, 2012, in press)Google Scholar
  6. 6.
    X. Dai, Y. Maday, Stable parareal in time method for first- and second-order hyperbolic systems. SIAM J. Sci. Comput. 35(1), A52–A78 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    M. Emmett, M.L. Minion, Toward an efficient parallel in time method for partial differential equations. Commun. Appl. Math. Comput. Sci. 7, 105–132 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    C. Farhat, M. Chandesris, Time-decomposed parallel time-integrators: theory and feasibility studies for fluid, structure, and fluid-structure applications. Int. J. Numer. Methods Eng. 58(9), 1397–1434 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    C. Farhat, J. Cortial, C. Dastillung, H. Bavestrello, Time-parallel implicit integrators for the near-real-time prediction of linear structural dynamic responses. Int. J. Numer. Methods Eng. 67, 697–724 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    P.F. Fischer, F. Hecht, Y. Maday, A parareal in time semi-implicit approximation of the Navier-Stokes equations, in Domain Decomposition Methods in Science and Engineering, ed. by R. Kornhuber et al. Lecture Notes in Computational Science and Engineering, vol. 40 (Springer, Berlin, 2005), pp. 433–440Google Scholar
  11. 11.
    M. Gander, M. Petcu, Analysis of a Krylov subspace enhanced parareal algorithm for linear problems. ESAIM: Proc. 25, 114–129 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    M.J. Gander, S. Vandewalle, Analysis of the parareal time-parallel time-integration method. SIAM J. Sci. Comput. 29(2), 556–578 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    J.-L. Lions, Y. Maday, G. Turinici, A “parareal” in time discretization of PDE’s, Comptes Rendus de l’Académie des Sciences – Series I – Mathematics 332, 661–668 (2001)Google Scholar
  14. 14.
    D. Ruprecht, R. Krause, Explicit parallel-in-time integration of a linear acoustic-advection system. Comput. Fluids 59(0), 72–83 (2012)CrossRefMathSciNetGoogle Scholar
  15. 15.
    R. Speck, D. Ruprecht, R. Krause, M. Emmett, M. Minion, M. Winkel, P. Gibbon, A massively space-time parallel n-body solver, in Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis, Salt Lake City (IEEE Computer Society Press, Los Alamitos, 2012), pp. 92:1–92:11Google Scholar
  16. 16.
    G.A. Staff, E.M. Rønquist, Stability of the parareal algorithm, in Domain Decomposition Methods in Science and Engineering ed. by R. Kornhuber et al. Lecture Notes in Computational Science and Engineering, vol. 40 (Springer, Berlin, 2005), pp. 449–456Google Scholar
  17. 17.
    J.M.F. Trindade, J.C.F. Pereira, Parallel-in-time simulation of the unsteady Navier–Stokes equations for incompressible flow. Int. J. Numer. Methods Fluids 45(10), 1123–1136 (2004)CrossRefzbMATHGoogle Scholar
  18. 18.
    _____________________________________________ , Parallel-in-time simulation of two-dimensional, unsteady, incompressible laminar flows. Numer. Heat Transf. Part B: Fundam. 50(1), 25–40 (2006)Google Scholar
  19. 19.
    H. Versteeg, W. Malalasekera, An Introduction to Computational Fluid Dynamics: The Finite Volume Method (Pearson Education, Harlow, England, 2007)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Johannes Steiner
    • 1
  • Daniel Ruprecht
    • 1
  • Robert Speck
    • 2
  • Rolf Krause
    • 1
  1. 1.Institute of Computational ScienceUniversità della Svizzera italianaLuganoSwitzerland
  2. 2.Jülich Supercomputing CentreForschungszentrum JülichJülichGermany

Personalised recommendations