Advertisement

Accelerating Parametric Probabilistic Verification

  • Nils Jansen
  • Florian Corzilius
  • Matthias Volk
  • Ralf Wimmer
  • Erika Ábrahám
  • Joost-Pieter Katoen
  • Bernd Becker
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8657)

Abstract

We present a novel method for computing reachability probabilities of parametric discrete-time Markov chains whose transition probabilities are fractions of polynomials over a set of parameters.Our algorithm is based on two key ingredients: a graph decomposition into strongly connected subgraphs combined with a novel factorization strategy for polynomials. Experimental evaluations show that these approaches can lead to a speed-up of up to several orders of magnitude in comparison to existing approaches.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Su, G., Rosenblum, D.S.: Asymptotic bounds for quantitative verification of perturbed probabilistic systems. In: Groves, L., Sun, J. (eds.) ICFEM 2013. LNCS, vol. 8144, pp. 297–312. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  2. 2.
    Daws, C.: Symbolic and parametric model checking of discrete-time Markov chains. In: Liu, Z., Araki, K. (eds.) ICTAC 2004. LNCS, vol. 3407, pp. 280–294. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Hahn, E.M., Hermanns, H., Zhang, L.: Probabilistic reachability for parametric Markov models. Software Tools for Technology Transfer 13(1), 3–19 (2010)CrossRefGoogle Scholar
  4. 4.
    Gruber, H., Johannsen, J.: Optimal lower bounds on regular expression size using communication complexity. In: Amadio, R.M. (ed.) FOSSACS 2008. LNCS, vol. 4962, pp. 273–286. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  5. 5.
    Hahn, E.M., Han, T., Zhang, L.: Synthesis for PCTL in parametric Markov decision processes. In: Bobaru, M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617, pp. 146–161. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  6. 6.
    Hahn, E.M., Hermanns, H., Wachter, B., Zhang, L.: PARAM: A model checker for parametric Markov models. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 660–664. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of probabilistic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 585–591. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  8. 8.
    Han, T., Katoen, J.P., Mereacre, A.: Approximate parameter synthesis for probabilistic time-bounded reachability. In: Proc. of RTSS, pp. 173–182. IEEE CS (2008)Google Scholar
  9. 9.
    Puggelli, A., Li, W., Sangiovanni-Vincentelli, A.L., Seshia, S.A.: Polynomial-time verification of PCTL properties of MDPs with convex uncertainties. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 527–542. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  10. 10.
    Benedikt, M., Lenhardt, R., Worrell, J.: LTL model checking of interval Markov chains. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 32–46. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  11. 11.
    Jansen, N., Corzilius, F., Volk, M., Wimmer, R., Ábrahám, E., Katoen, J.P., Becker, B.: Accelerating parametric probabilistic verification. CoRR abs/1312.3979 (2013)Google Scholar
  12. 12.
    Baier, C., Katoen, J.P.: Principles of Model Checking. The MIT Press (2008)Google Scholar
  13. 13.
    Ábrahám, E., Jansen, N., Wimmer, R., Katoen, J.P., Becker, B.: DTMC model checking by SCC reduction. In: Proc. of QEST, pp. 37–46. IEEE CS (2010)Google Scholar
  14. 14.
    Tarjan, R.E.: Depth-first search and linear graph algorithms. SIAM Journal on Computing 1(2), 146–160 (1972)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Quarteroni, A., Sacco, R., Saleri, F.: Numerical Mathematics. Springer (2000)Google Scholar
  16. 16.
    Jovanović, D., de Moura, L.: Solving non-linear arithmetic. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS, vol. 7364, pp. 339–354. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  17. 17.
    Bauer, C., Frink, A., Kreckel, R.: Introduction to the GiNaC framework for symbolic computation within the C++ programming language. J. Symb. Comput. 33(1), 1–12 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Helmink, L., Sellink, M., Vaandrager, F.: Proof-checking a data link protocol. In: Barendregt, H., Nipkow, T. (eds.) TYPES 1993. LNCS, vol. 806, pp. 127–165. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  19. 19.
    Reiter, M.K., Rubin, A.D.: Crowds: Anonymity for web transactions. ACM Trans. on Information and System Security 1(1), 66–92 (1998)CrossRefGoogle Scholar
  20. 20.
    Han, J., Jonker, P.: A system architecture solution for unreliable nanoelectronic devices. IEEE Transactions on Nanotechnology 1, 201–208 (2002)CrossRefGoogle Scholar
  21. 21.
    Fränzle, M., Herde, C., Teige, T., Ratschan, S., Schubert, T.: Efficient solving of large non-linear arithmetic constraint systems with complex boolean structure. Journal on Satisfiability, Boolean Modeling, and Computation 1(3-4), 209–236 (2007)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Nils Jansen
    • 1
  • Florian Corzilius
    • 1
  • Matthias Volk
    • 1
  • Ralf Wimmer
    • 2
  • Erika Ábrahám
    • 1
  • Joost-Pieter Katoen
    • 1
  • Bernd Becker
    • 2
  1. 1.RWTH Aachen UniversityGermany
  2. 2.Albert-Ludwigs-University FreiburgGermany

Personalised recommendations