Compositionality Results for Quantitative Information Flow

  • Yusuke Kawamoto
  • Konstantinos Chatzikokolakis
  • Catuscia Palamidessi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8657)


In the min-entropy approach to quantitative information flow, the leakage is defined in terms of a minimization problem, which, in case of large systems, can be computationally rather heavy. The same happens for the recently proposed generalization called g-vulnerability. In this paper we study the case in which the channel associated to the system can be decomposed into simpler channels, which typically happens when the observables consist of several components. Our main contribution is the derivation of bounds on the g-leakage of the whole system in terms of the g-leakages of its components.


Compositionality Result Channel Matrix Parallel Composition Gain Function Operational Scenario 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
  2. 2.
    Alvim, M.S., Chatzikokolakis, K., Palamidessi, C., Smith, G.: Measuring information leakage using generalized gain functions. In: Proc. of CSF, pp. 265–279. IEEE (2012)Google Scholar
  3. 3.
    Andrés, M.E., Palamidessi, C., van Rossum, P., Smith, G.: Computing the leakage of information-hiding systems. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 373–389. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  4. 4.
    Barthe, G., Köpf, B.: Information-theoretic bounds for differentially private mechanisms. In: Proc. of CSF, pp. 191–204. IEEE (2011)Google Scholar
  5. 5.
    Boreale, M.: Quantifying information leakage in process calculi. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 119–131. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Boreale, M., Pampaloni, F., Paolini, M.: Asymptotic information leakage under one-try attacks. In: Hofmann, M. (ed.) FOSSACS 2011. LNCS, vol. 6604, pp. 396–410. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  7. 7.
    Braun, C., Chatzikokolakis, K., Palamidessi, C.: Quantitative notions of leakage for one-try attacks. In: Proc. of MFPS. ENTCS, vol. 249, pp. 75–91. Elsevier (2009)Google Scholar
  8. 8.
    Cachin, C.: Smooth entropy and rényi entropy. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 193–208. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  9. 9.
    Chatzikokolakis, K., Chothia, T., Guha, A.: Statistical Measurement of Information Leakage. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 390–404. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  10. 10.
    Chatzikokolakis, K., Palamidessi, C., Panangaden, P.: Anonymity protocols as noisy channels. Inf. and Comp. 206(2-4), 378–401 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Chatzikokolakis, K., Palamidessi, C., Panangaden, P.: On the Bayes risk in information-hiding protocols. J. of Comp. Security 16(5), 531–571 (2008)Google Scholar
  12. 12.
    Chothia, T., Kawamoto, Y., Novakovic, C., Parker, D.: Probabilistic point-to-point information leakage. In: Proc. of CSF, pp. 193–205. IEEE (June 2013)Google Scholar
  13. 13.
    Chothia, T., Kawamoto, Y.: Statistical estimation of min-entropy leakage (April 2014), (manuscript)
  14. 14.
    Chothia, T., Kawamoto, Y., Novakovic, C.: A tool for estimating information leakage. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 690–695. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  15. 15.
    Clark, D., Hunt, S., Malacaria, P.: Quantitative analysis of the leakage of confidential data. In: Proc. of QAPL. ENTCS, vol. 59(3), pp. 238–251. Elsevier (2001)Google Scholar
  16. 16.
    Espinoza, B., Smith, G.: Min-entropy as a resource. Information and Computation (2013)Google Scholar
  17. 17.
    Kawamoto, Y., Chatzikokolakis, K., Palamidessi, C.: Compositionality Results for Quantitative Information Flow. Tech. rep., INRIA (2014),
  18. 18.
    Köpf, B., Basin, D.A.: An information-theoretic model for adaptive side-channel attacks. In: Proc. of CCS, pp. 286–296. ACM (2007)Google Scholar
  19. 19.
    Kwiatkowska, M.Z., Norman, G., Parker, D.: PRISM 2.0: A tool for probabilistic model checking. In: Proc. of QEST, pp. 322–323. IEEE (2004)Google Scholar
  20. 20.
    Malacaria, P.: Assessing security threats of looping constructs. In: Proc. of POPL, pp. 225–235. ACM (2007)Google Scholar
  21. 21.
    Nassu, B., Nanya, T., Duarte, E.: Topology discovery in dynamic and decentralized networks with mobile agents and swarm intelligence. In: Proc. of ISDA, pp. 685–690. IEEE (2007)Google Scholar
  22. 22.
    Reiter, M.K., Rubin, A.D.: Crowds: anonymity for Web transactions. ACM Trans. on Information and System Security 1(1), 66–92 (1998)CrossRefGoogle Scholar
  23. 23.
    Sassone, V., Hamadou, S., Yang, M.: Trust in anonymity networks. In: Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 48–70. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  24. 24.
    Shmatikov, V.: Probabilistic analysis of anonymity. In: Proc. of CSFW, pp. 119–128. IEEE (2002)Google Scholar
  25. 25.
    Smith, G.: On the foundations of quantitative information flow. In: de Alfaro, L. (ed.) FOSSACS 2009. LNCS, vol. 5504, pp. 288–302. Springer, Heidelberg (2009)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Yusuke Kawamoto
    • 1
    • 2
  • Konstantinos Chatzikokolakis
    • 2
    • 3
  • Catuscia Palamidessi
    • 1
    • 2
  1. 1.INRIAFrance
  2. 2.École PolytechniqueFrance
  3. 3.CNRSFrance

Personalised recommendations