Advertisement

Probabilistic Programming Process Algebra

  • Anastasis Georgoulas
  • Jane Hillston
  • Dimitrios Milios
  • Guido Sanguinetti
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8657)

Abstract

Formal modelling languages such as process algebras are widespread and effective tools in computational modelling. However, handling data and uncertainty in a statistically meaningful way is an open problem in formal modelling, severely hampering the usefulness of these elegant tools in many real world applications. Here we introduce ProPPA, a process algebra which incorporates uncertainty in the model description, allowing the use of Machine Learning techniques to incorporate observational information in the modelling. We define the semantics of the language by introducing a quantitative generalisation of Constraint Markov Chains. We present results from a prototype implementation of the language, demonstrating its usefulness in performing inference in a non-trivial example.

Keywords

Model Check Inference Algorithm Label Transition System Approximate Bayesian Computation Process Algebra 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aldini, A., Bernardo, M., Corradini, F.: A process algebraic approach to software architecture design. Springer (2010)Google Scholar
  2. 2.
    Aziz, A., Sanwal, K., Singhal, V., Brayton, R.: Verifying continuous time Markov chains. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 269–276. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  3. 3.
    Baldan, P., Bracciali, A., Brodo, L., Bruni, R.: Deducing Interactions in Partially Unspecified Biological Systems. In: Anai, H., Horimoto, K., Kutsia, T. (eds.) AB 2007. LNCS, vol. 4545, pp. 262–276. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    Bortolussi, L., Sanguinetti, G.: Learning and designing stochastic processes from logical constraints. In: Joshi, K., Siegle, M., Stoelinga, M., D’Argenio, P.R. (eds.) QEST 2013. LNCS, vol. 8054, pp. 89–105. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  5. 5.
    Brim, L., Češka, M., Dražan, S., Šafránek, D.: Exploring parameter space of stochastic biochemical systems using quantitative model checking. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 107–123. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  6. 6.
    Caillaud, B., Delahaye, B., Larsen, K.G., Legay, A., Pedersen, M.L., Wsowski, A.: Constraint Markov Chains. Theor. Comp. Science 412(34), 4373–4404 (2011)CrossRefzbMATHGoogle Scholar
  7. 7.
    Calzone, L., Chabrier-Rivier, N., Fages, F., Soliman, S.: Machine Learning Biochemical Networks from Temporal Logic Properties. In: Priami, C., Plotkin, G. (eds.) Trans. on Comput. Syst. Biol. VI. LNCS (LNBI), vol. 4220, pp. 68–94. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Ciocchetta, F., Hillston, J.: Bio-PEPA: A framework for the modelling and analysis of biological systems. Theor. Comp. Science 410(33-34), 3065–3084 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-state concurrent systems using temporal logic specifications. ACM Trans. Program. Lang. Syst. 8(2), 244–263 (1986)CrossRefzbMATHGoogle Scholar
  10. 10.
    Daley, D.J., Kendall, D.G.: Epidemics and Rumours. Nature 204(4963) (1964)Google Scholar
  11. 11.
    Galpin, V.: Equivalences for a biological process algebra. Theor. Comp. Science 412(43), 6058–6082 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Georgoulas, A., Hillston, J., Sanguinetti, G.: ABC–Fun: A Probabilistic Programming Language for Biology. In: Gupta, A., Henzinger, T.A. (eds.) CMSB 2013. LNCS, vol. 8130, pp. 150–163. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  13. 13.
    Goodman, N.D., Mansinghka, V.K., Roy, D.M., Bonawitz, K., Tenenbaum, J.B.: Church: a language for generative models. In: McAllester, D.A., Myllymäki, P. (eds.) UAI, pp. 220–229. AUAI Press (2008)Google Scholar
  14. 14.
    Hermanns, H.: Interactive Markov Chains: and the quest for quantified quality. Springer (2002)Google Scholar
  15. 15.
    Hillston, J.: A Compositional Approach to Performance Modelling. CUP (1996)Google Scholar
  16. 16.
    Jha, S.K., Clarke, E.M., Langmead, C.J., Legay, A., Platzer, A., Zuliani, P.: A Bayesian Approach to Model Checking Biological Systems. In: Degano, P., Gorrieri, R. (eds.) CMSB 2009. LNCS, vol. 5688, pp. 218–234. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  17. 17.
    Marco, D., Cairns, D., Shankland, C.: Optimisation of process algebra models using evolutionary computation. In: 2011 IEEE Congress on Evolutionary Computation (CEC), pp. 1296–1301 (2011)Google Scholar
  18. 18.
    Marco, D., Shankland, C., Cairns, D.: Evolving Bio-PEPA process algebra models using genetic programming. In: Proceedings of the Fourteenth International Conference on Genetic and Evolutionary Computation Conference, GECCO 2012, New York, NY, USA, pp. 177–184 (2012)Google Scholar
  19. 19.
    Minka, T., Winn, J., Guiver, J., Knowles, D.: Infer.NET 2.5, Microsoft Research Cambridge (2012), http://research.microsoft.com/infernet
  20. 20.
    de Nicola, R., Latella, D., Loreti, M., Massink, M.: A Uniform Definition of Stochastic Process Calculi. ACM Comput. Surv. 46(1), 5:1–5:35 (2013)Google Scholar
  21. 21.
    Pfeffer, A.: The Design and Implementation of IBAL: A General-Purpose Probabilistic Language. In: Getoor, L., Taskar, B. (eds.) Introduction to Statistical Relational Learning. The MIT Press (2007)Google Scholar
  22. 22.
    Pfeffer, A.: CTPPL: A Continuous Time Probabilistic Programming Language. In: IJCAI, pp. 1943–1950 (2009)Google Scholar
  23. 23.
    Sciacca, E., Spinella, S., Calcagno, C., Damiani, F., Coppo, M.: Parameter Identification and Assessment of Nutrient Transporters in AM Symbiosis through Stochastic Simulations. ENTCS 293, 83–96 (2013), Proceedings of CS2Bio 2012 Google Scholar
  24. 24.
    Sen, K., Viswanathan, M., Agha, G.: Model-Checking Markov Chains in the Presence of Uncertainties. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp. 394–410. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  25. 25.
    Toni, T., Welch, D., Strelkowa, N., Ipsen, A., Stumpf, M.P.: Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems. Journal of The Royal Society Interface 6(31), 187–202 (2009)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Anastasis Georgoulas
    • 1
  • Jane Hillston
    • 1
  • Dimitrios Milios
    • 1
  • Guido Sanguinetti
    • 1
    • 2
  1. 1.School of InformaticsUniversity of EdinburghUK
  2. 2.SynthSys — Synthetic and Systems BiologyUniversity of EdinburghUK

Personalised recommendations