Generating Good Span n Sequences Using Orthogonal Functions in Nonlinear Feedback Shift Registers

  • Kalikinkar Mandal
  • Guang Gong


A binary span n sequence generated by an n-stage nonlinear feedback shift register (NLFSR) is in a one-to-one correspondence with a de Bruijn sequence and has the following randomness properties: period 2 n − 1, balance, and ideal n-tuple distribution. A span n sequence may have a high linear span. However, how to find a nonlinear feedback function that generates such a sequence constitutes a long-standing challenging problem for about 5 decades since Golomb’s pioneering book, Shift Register Sequences, published in the middle of the 1960s. In hopes of finding good span n sequences with large linear span, in this chapter we study the generation of span n sequences using orthogonal functions in polynomial representation as nonlinear feedback in a nonlinear feedback shift register. Our empirical study shows that the success probability of obtaining a span n sequence in this technique is better than that of obtaining a span n sequence in a random span n sequence generation method. Moreover, we analyze the linear span of new span n sequences, and the linear span of a new sequence lies between 2 n − 2 − 3n (near optimal) and 2 n − 2 (optimal). Two conjectures on the linear span of new sequences are presented and are valid for n ≤ 20.


Recurrence Relation Success Probability Binary Sequence Linear Span Stream Cipher 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    F.S. Annexstein, Generating de Bruijn sequences: an efficient implementation. IEEE Trans. Inf. Theory 46(2), 198–200 (1997)Google Scholar
  2. 2.
    E.R. Berlekamp, Algebraic Coding Theory, Ch. 7 (McGraw-Hill, New York, 1968)Google Scholar
  3. 3.
    A.H. Chan, R.A. Games, E.L. Key, On the complexities of de Bruijn sequences. J. Combin. Theory Ser. A 33(3) 233–246 (1982)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    A.H. Chan, R.A. Games, J.J. Rushanan, On quadratic m-sequences, in IEEE International Symposium on Information Theory, vol. 364 (1994)Google Scholar
  5. 5.
    A.C. Chang, S.W. Golomb, G. Gong, P.V. Kumar, On the linear span of ideal autocorrelation sequences arising from the Segre hyperoval, in Sequences and their Applications—Proceedings of SETA’98, Discrete Mathematics and Theoretical Computer Science (Springer, London, 1999)Google Scholar
  6. 6.
    T. Chang, B. Park, Y.H. Kim, I. Song, An efficient implementation of the D-homomorphism for generation of de Bruijn sequences. IEEE Trans. Inf. Theory 45(4), 1280–1283 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    C. De Canniére, O. Dunkelman, M. Knez̀ević, KATAN and KTANTAN—a family of small and efficient hardware-oriented block ciphers. in Proceedings of the 11th International Workshop on Cryptographic Hardware and Embedded Systems, LNCS, vol. 5747 (Springer, Heidelberg, 2009). pp. 272–288Google Scholar
  8. 8.
    J. Dillon, H. Dobbertin, New cyclic difference sets with singer parameters. Finite Fields Appl. 10(3), 342–389 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    H. Dobbertin, Kasami power functions, permutation polynomials and cyclic difference sets, in Proceedings of the NATO-A.S.I. Workshop Difference Sets, Sequences and their Correlation Properties, (Kluwer, Bad Windsheim/Dordrecht, 1999), pp. 133–158Google Scholar
  10. 10.
    E. Dubrova, A list of maximum period NLFSRs. Report 2012/166, Cryptology ePrint Archive (2012),
  11. 11.
    eSTREAM: The ECRYPT stream cipher project.
  12. 12.
    T. Etzion, A. Lempel, Construction of de Bruijn sequences of minimal complexity. IEEE Trans. Inf. Theory 30(5), 705–709 (1984)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    R. Evan, H.D.L. Hollman, C. Krattenthaler, Q. Xiang, Gauss sums, Jacobi sums and p-ranks of cyclic difference sets. J. Combin. Theory Ser. A, 87(1), 74–119 (1999)CrossRefMathSciNetGoogle Scholar
  14. 14.
    H. Fredricksen, A class of nonlinear de Bruijn cycles. J. Combin. Theory Ser. A 19(2), 192–199 (1975)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    H. Fredricksen, A survey of full length nonlinear shift register cycle algorithms. SIAM Rev. 24(2), 195–221 (1982)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    H. Fredricksen, I. Kessler, Lexicographic compositions and de Bruijn sequences. J. Combin. Theory Ser. A 22, 17–30 (1977)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    H. Fredricksen, J. Maiorana, Necklaces of beads in k colors and k-ary de Bruijn sequences. Discrete Math. 23(3), 207–210 (1978)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    R.A. Games, A generalized recursive construction for de Bruijn sequences. IEEE Trans. Inf. Theory 29(6), 843–850 (1983)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    B.M. Gammel, R. Göttfert, O. Kniffler, Achterbahn-128/80 (2006),
  20. 20.
    S.W. Golomb, Shift Register Sequences (Aegean Park Press, Laguna Hills, 1981)Google Scholar
  21. 21.
    S.W. Golomb, On the classification of balanced binary sequences of period 2n − 1. IEEE Trans. Inf. Theory, 26(6), 730–732 (1980)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    S.W. Golomb, G. Gong, Signal Design for Good Correlation: for Wireless Communication, Cryptography, and Radar (Cambridge University Press, New York, 2004)Google Scholar
  23. 23.
    G. Gong, Randomness and representation of span n sequences, in Proceedings of the 2007 International Conference on Sequences, Subsequences, and Consequences, SSC’07 (Springer, Heidelberg, 2007), pp. 192–203Google Scholar
  24. 24.
    E.R. Hauge, T. Helleseth, De Bruijn sequences, irreducible codes and cyclotomy. Discrete Math. 159(1–3), 143–154 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    C.J.A. Jansen, W.G. Franx, D.E. Boekee, An efficient algorithm for the generation of de Bruijn cycles. IEEE Trans. Inf. Theory 37(5), 1475–1478 (1991)CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    A. Lempel, On a homomorphism of the de Bruijn graph and its applications to the design of feedback shift registers. IEEE Trans. Comput. C-19(12), 1204–1209 (1970)CrossRefMathSciNetGoogle Scholar
  27. 27.
    K. Mandal, Design and analysis of cryptographic pseudorandom number/sequence generators with applications in RFID. Ph.D. Thesis, University of Waterloo, 2013Google Scholar
  28. 28.
    K. Mandal, G. Gong, in Cryptographically Strong de Bruijn Sequences with Large Periods, ed. by L.R. Knudsen, H. Wu SAC 2012. LNCS, vol. 7707 (Springer, Heidelberg, 2012), pp. 104–118Google Scholar
  29. 29.
    K. Mandal, G. Gong, Cryptographic D-morphic analysis and fast implementations of composited De Bruijn sequences. Technical Report CACR 2012–27, University of Waterloo (2012)Google Scholar
  30. 30.
    K. Mandal, X. Fan, G. Gong, in Warbler: A Lightweight Pseudorandom Number Generator for EPC Class 1 Gen 2 RFID Tags, ed. by N.W. Lo, Y. Li. Cryptology and Information Security Series—The 2012 Workshop on RFID and IoT Security (RFIDsec’12 Asia), vol. 8 (IOS Press, Amsterdam, 2012), pp. 73–84Google Scholar
  31. 31.
    J.L. Massey, Shift-register synthesis and BCH decoding. IEEE Trans. Inf. Theory 15(1), 122–127 (1969)CrossRefzbMATHMathSciNetGoogle Scholar
  32. 32.
    G.L. Mayhew, Weight class distributions of de Bruijn sequences. Discrete Math. 126, 425–429 (1994)CrossRefzbMATHMathSciNetGoogle Scholar
  33. 33.
    G.L. Mayhew, Clues to the hidden nature of de Bruijn sequences. Comput. Math. Appl., 39(11), 57–65 (2000)CrossRefzbMATHGoogle Scholar
  34. 34.
    G.L. Mayhew, S.W. Golomb, Linear Spans of modified de Bruijn sequences. IEEE Trans. Inf. Theory 36(5), 1166–1167 (1990)CrossRefzbMATHGoogle Scholar
  35. 35.
    G.L. Mayhew, S.W. Golomb, Characterizations of generators for modified de Bruijn sequences. Adv. Appl. Math. 13, 454–461 (1992)CrossRefzbMATHMathSciNetGoogle Scholar
  36. 36.
    J. Mykkeltveit, M.-K. Siu, P. Tong, On the cycle structure of some nonlinear shift register sequences. Inf. Control 43(2), 202–215 (1979)CrossRefzbMATHMathSciNetGoogle Scholar
  37. 37.
    J.L.-F. Ng, Binary nonlinear feedback shift register sequence generator using the trace function, Master’s Thesis, University of Waterloo, 2005Google Scholar
  38. 38.
    J.S. No, S.W. Golomb, G. Gong, H.K. Lee, P. Gaal, New binary pseudorandom sequences of period 2n − 1 with ideal autocorrelation. IEEE Trans. Inf. Theory 44(2), 814–817 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  39. 39.
    T. Rachwalik, J. Szmidt, R. Wicik, J. Zablocki, Generation of nonlinear feedback shift registers with special-purpose hardware. Cryptology ePrint Archive, Report 2012/314 (2012),
  40. 40.
    J.-H. Yang, Z.-D. Dai, Construction of m-ary de Bruijn sequences (extended abstract), in Advances in Cryptology—AUSCRYPT’92, LNCS (Springer, Heidelberg, 1993), pp. 357–363Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringUniversity of WaterlooWaterlooCanada

Personalised recommendations