Crowd Research at School: Crossing Flows

  • Johanna Bamberger
  • Anna-Lena Geßler
  • Peter Heitzelmann
  • Sara Korn
  • Rene Kahlmeyer
  • Xue Hao Lu
  • Qi Hao Sang
  • Zhi Jie Wang
  • Guan Zong Yuan
  • Michael Gauß
  • Tobias Kretz
Conference paper

Abstract

It has become widely known that when two flows of pedestrians cross stripes emerge spontaneously by which the pedestrians of the two walking directions manage to pass each other in an orderly manner. In this work, we report about the results of an experiment on crossing flows which has been carried out at a German school. These results include that previously reported high flow volumes on the crossing area can be confirmed. The empirical results are furthermore compared to the results of a simulation model which successfully could be calibrated to catch the specific properties of the population of participants.

References

  1. 1.
    Y. Naka, Mechanism of cross passenger frow – study on complicated passenger flow in railway station (part 1). Trans. Archit. Inst. Jpn. 258, 93–102 (1977). In Japanese languageGoogle Scholar
  2. 2.
    K. Ando, H. Ota, T. Oki, Forecasting the flow of people. Railw. Res. Rev. 45(8), 8–14 (1988). In Japanese languageGoogle Scholar
  3. 3.
    R.L. Hughes, A continuum theory for the flow of pedestrians. Trans. Res. Part B: Methodol. 36(6), 507–535 (2002)CrossRefGoogle Scholar
  4. 4.
    D. Helbing, L. Buzna, A. Johansson, T. Werner, Self-organized pedestrian crowd dynamics: experiments, simulations, and design solutions. Transp. Sci. 39, 1–24 (2005)CrossRefGoogle Scholar
  5. 5.
    L. Fisher, The Perfect Swarm: The Science of Complexity in Everyday Life (Basic Books, New York, 2009)Google Scholar
  6. 6.
    T. Sano, K. Tatebe, The difficulty of crossing pedestrian flow field experiment and avoidance behavior model. Bull. Aichi Inst. Technol. 35, 167–172 (2000)Google Scholar
  7. 7.
    S.C. Wong, W.L. Leung, S.H. Chan, W.H.K. Lam, N.H.C. Yung, C.Y. Liu, P. Zhang, Bidirectional pedestrian stream model with oblique intersecting angle. J. Transp. Eng. 136(3), 234–242 (2010)CrossRefGoogle Scholar
  8. 8.
    K. Yamamoto, M. Okada, Continuum model of crossing pedestrian flows and swarm control based on temporal/spatial frequency, in 2011 IEEE International Conference on Robotics and Automation (ICRA), Shanghai (IEEE, 2011), pp. 3352–3357Google Scholar
  9. 9.
    C. Dias, M. Sarvi, N. Shiwakoti, Intersecting and merging pedestrian crowd flows under panic conditions: insights from biological entities, in 35th Australasian Transport Research Forum (ATRF), Perth, 2012Google Scholar
  10. 10.
    G. Bärwolff, M. Chen, F. Huth, G. Lämmel, M. Plaue, H. Schwandt, Methods for modeling and simulation of multi-destination pedestrian crowds, in Pedestrian and Evacuation Dynamics 2012, ed. by U. Weidmann, U. Kirsch, M. Schreckenberg (Springer, Cham, 2014)Google Scholar
  11. 11.
    J. Cividini, C. Appert-Roland, H.-J. Hilhorst, Generic instability at the crossing of pedestrian flows, in Traffic and Granular Flow 2013, ed. by M. Boltes, M. Chraibi, A. Schadschneider, A. Seyfried, pp. 13–20 (Springer, Berlin/Heidelberg, 2014)Google Scholar
  12. 12.
    D.C. Duives, W. Daamen, S.P. Hoogendoorn, Quantitative Estimation of Self-Organization in Bi-directional and Crossing Flows During Crowd Movements, in Traffic and Granular Flow 2013, ed. by M. Boltes, M. Chraibi, A. Schadschneider, A. Seyfried, pp. 251–256 (Springer, Berlin/Heidelberg, 2014)Google Scholar
  13. 13.
    T. Kretz, S. Hengst, P. Vortisch, Pedestrian flow at bottlenecks – validation and calibration of VISSIM’s social force model of pedestrian traffic and its empirical foundations, in International Symposium of Transport Simulation 2008 (ISTS08), ed. by M. Sarvi, page electronic publication, Gold Coast (Monash University, 2008)Google Scholar
  14. 14.
    C. Bönisch, T. Kretz, Simulation of pedestrians crossing a street, in Traffic and Granular Flow‘09, 2011. Accepted for publicationGoogle Scholar
  15. 15.
    A.S. Sahaleh, M. Bierlaire, B. Farooq, A. Danalet, F.S. Hänseler, Scenario analysis of pedestrian flow in public spaces, in Proceedings of the 12th Swiss Transport Research Conference (STRC), Ascona, May 2012, pp. 2–4Google Scholar
  16. 16.
    T. Kretz, F. Reutenauer, F. Schubert, Multimodal simulation-based planning for pedestrians, in 92nd Annual Meeting of the Transportation Research Board, Washington, D.C., 2013Google Scholar
  17. 17.
    M. Moussaïd, M. Guillot, E.G. Moreau, J. Fehrenbach, O. Chabiron, S. Lemercier, J. Pettré, C. Appert-Rolland, P. Degond, G. Theraulaz, Traffic instabilities in self-organized pedestrian crowds. PLoS Comput. Biol. 8(3), e1002442 (2012)Google Scholar
  18. 18.
    D. Helbing, I. Farkas, T. Vicsek, Simulating dynamical features of escape panic. Nature, 407(6803), 487–490 (2000)CrossRefGoogle Scholar
  19. 19.
    A. Johansson, D. Helbing, P.K. Shukla, Specification of the social force pedestrian model by evolutionary adjustment to video tracking data. Adv. Complex Syst. 10(supp02), 271–288 (2007)Google Scholar
  20. 20.
    T. Kretz, A. Große, S. Hengst, L. Kautzsch, A. Pohlmann, P. Vortisch, Quickest paths in simulations of pedestrians. Adv. Complex Syst. 14, 733–759 (2011)CrossRefGoogle Scholar
  21. 21.
    T. Kretz, S. Hengst, V. Roca, A. Pérez Arias, S. Friedberger, U.D. Hanebeck, Calibrating dynamic pedestrian route choice with an extended range telepresence system, in 2011 IEEE International Conference on Computer Vision Workshops, pp. 166–172, 2011; First IEEE Workshop on Modeling, Simulation and Visual Analysis of Large Crowds, Barcelona, Nov 2011, pp. 6–13Google Scholar
  22. 22.
    T. Kretz, A. Große, From unbalanced initial occupant distribution to balanced exit usage in a simulation model of pedestrian dynamics, in Human Behaviour in Fire Symposium, Cambridge, ed. by T.J. Shields et al. (Interscience Communications, 2012), pp. 536–540Google Scholar
  23. 23.
    T. Kretz, Multi-directional flow as touch-stone to assess models of pedestrian dynamics, in Annual Meeting of the Transportation Research Board, Washington, D.C., 2013Google Scholar
  24. 24.
    T. Kretz, The effect of integrating travel time, in Pedestrian and Evacuation Dynamics 2012, ed. by U. Weidmann, U. Kirsch, M. Schreckenberg (Springer International Publishing, 2014), pp. 1013–1027Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Johanna Bamberger
    • 1
  • Anna-Lena Geßler
    • 1
  • Peter Heitzelmann
    • 1
  • Sara Korn
    • 1
  • Rene Kahlmeyer
    • 1
  • Xue Hao Lu
    • 2
  • Qi Hao Sang
    • 2
  • Zhi Jie Wang
    • 2
  • Guan Zong Yuan
    • 2
  • Michael Gauß
    • 3
  • Tobias Kretz
    • 4
  1. 1.BismarckgymnasiumKarlsruheGermany
  2. 2.Jing Ye High SchoolShanghaiChina
  3. 3.Fernstudienzentrum – Karlsruhe Institute of Technology (KIT)KarlsruheGermany
  4. 4.PTV GroupKarlsruheGermany

Personalised recommendations