Geodesic Regression on the Grassmannian
Abstract
This paper considers the problem of regressing data points on the Grassmann manifold over a scalar-valued variable. The Grassmannian has recently gained considerable attention in the vision community with applications in domain adaptation, face recognition, shape analysis, or the classification of linear dynamical systems. Motivated by the success of these approaches, we introduce a principled formulation for regression tasks on that manifold. We propose an intrinsic geodesic regression model generalizing classical linear least-squares regression. Since geodesics are parametrized by a starting point and a velocity vector, the model enables the synthesis of new observations on the manifold. To exemplify our approach, we demonstrate its applicability on three vision problems where data objects can be represented as points on the Grassmannian: the prediction of traffic speed and crowd counts from dynamical system models of surveillance videos and the modeling of aging trends in human brain structures using an affine-invariant shape representation.
Keywords
Geodesic regression Grassmann manifold Traffic speed prediction Crowd counting Shape regressionPreview
Unable to display preview. Download preview PDF.
Supplementary material
References
- 1.Absil, P.A., Mahony, R., Sepulchre, R.: Optimization Algorithms on Matrix Manifolds. Princeton University Press (2008)Google Scholar
- 2.Batzies, E., Machado, L., Silva Leite, F.: The geometric mean and the geodesic fitting problem on the Grassmann manifold, http://www.mat.uc.pt/preprints/ps/p1322.pdf (unpublished manuscript)
- 3.Begelfor, E., Werman, W.: Affine invariance revisited. In: CVPR (2006)Google Scholar
- 4.Boothby, W.: An Introduction to Differentiable Manifolds and Riemannian Geometry. Academic Press (1986)Google Scholar
- 5.Camarinha, M., Leite, F.S., Crouch, P.: Splines of class C k on non-Euclidean spaces. IMA J. Math. Control Info. 12(4), 399–410 (1995)CrossRefzbMATHGoogle Scholar
- 6.Çetingül, H., Vidal, R.: Intrinsic mean shift for clustering on Stiefel and Grassmann manifolds. In: CVPR (2009)Google Scholar
- 7.Chan, A., Vasconcelos, N.: Classification and retrieval of traffic video using auto-regressive stochastic processes. In: Intelligent Vehicles (2005)Google Scholar
- 8.Chan, A., Vasconcelos, N.: Counting people with low-level features and Bayesian regression. Trans. Image Process. 12(4), 2160–2177 (2012)CrossRefMathSciNetGoogle Scholar
- 9.Doretto, G., Chiuso, A., Wu, Y., Soatto, S.: Dynamic textures. Int. J. Comput. Vision 51(2), 91–109 (2003)CrossRefzbMATHGoogle Scholar
- 10.Edelman, A., Arias, T., Smith, S.T.: The geometry of algorithms with orthogonality constraints. SIAM J. Matrix Anal. Appl. 20(2), 303–353 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
- 11.Fletcher, T.P.: Geodesic regression and the theory of least squares on Riemannian manifolds. Int. J. Comput. Vision 105(2), 171–185 (2012)CrossRefMathSciNetGoogle Scholar
- 12.Gallivan, K., Srivastava, A., Xiuwen, L., Dooren, P.V.: Efficient algorithms for inferences on Grassmann manifolds. In: Statistical Signal Processing Workshop, pp. 315–318 (2003)Google Scholar
- 13.Gopalan, R., Li, R., Chellappa, R.: Domain adaption for object recognition: An unsupervised approach. In: ICCV (2011)Google Scholar
- 14.Hamm, J., Lee, D.: Grassmann discriminant analysis: A unifying view on subspace learning. In: ICML (2008)Google Scholar
- 15.Hinkle, J., Fletcher, P.T., Joshi, S.: Intrinsic polynomials for regression on Riemannian manifolds. J. Math. Imaging Vis., 1–21 (2014)Google Scholar
- 16.Hong, Y., Joshi, S., Sanchez, M., Styner, M., Niethammer, M.: Metamorphic geodesic regression. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012, Part III. LNCS, vol. 7512, pp. 197–205. Springer, Heidelberg (2012)CrossRefGoogle Scholar
- 17.Hong, Y., Singh, N., Kwitt, R., Niethammer, M.: Time-warped geodesic regression. In: Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014, Part II. LNCS, vol. 8674, pp. 105–112. Springer, Heidelberg (2014)Google Scholar
- 18.Jayasumana, S., Hartley, R., Salzmann, M., Li, H., Harandi, M.: Optimizing over radial kernels on compact manifolds. In: CVPR (2014)Google Scholar
- 19.Lui, Y.: Human gesture recognition on product manifolds. JMLR 13, 3297–3321 (2012)zbMATHMathSciNetGoogle Scholar
- 20.Lui, Y., Beveridge, J., Kirby, M.: Canonical Stiefel quotient and its application to generic face recognition in illumination spaces. In: BTAS (2009)Google Scholar
- 21.Mittal, S., Meer, P.: Conjugate gradient descent on Grassmann manifolds for robust subspace estimation. Image Vision Comput. 30, 417–427 (2012)CrossRefGoogle Scholar
- 22.Niethammer, M., Huang, Y., Vialard, F.-X.: Geodesic regression for image time-series. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part II. LNCS, vol. 6892, pp. 655–662. Springer, Heidelberg (2011)CrossRefGoogle Scholar
- 23.Noakes, L., Heinzinger, G., Paden, B.: Cubic splines on curved spaces. IMA J. Math. Control Info. 6(4), 465–473 (1989)CrossRefzbMATHMathSciNetGoogle Scholar
- 24.Rentmeesters, Q.: A gradient method for geodesic data fitting on some symmetric Riemannian manifolds. In: CDC-ECC (2011)Google Scholar
- 25.Singh, N., Hinkle, J., Joshi, S., Fletcher, P.: A vector momenta formulation of diffeomorphisms for improved geodesic regression and atlas construction. In: ISBI (2013)Google Scholar
- 26.Singh, N., Niethammer, M.: Splines for diffeomorphic image regression. In: Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014, Part II. LNCS, vol. 8674, pp. 121–129. Springer, Heidelberg (2014)Google Scholar
- 27.Turuga, P., Veeraraghavan, A., Srivastrava, A., Chellappa, R.: Statistical computations on Grassmann and Stiefel manifolds for image and video-based recognition. IEEE Trans. Pattern Anal. Mach. Intell. 33(11), 2273–2285 (2011)CrossRefGoogle Scholar
- 28.Wong, Y.C.: Differential geometry of Grassmann manifolds. Proc. Natl. Acad. Sci. USA 57(3), 589–594 (1967)CrossRefzbMATHGoogle Scholar
- 29.Zheng, J., Liu, M.Y., Chellappa, R., Phillips, P.: A Grassmann manifold-based domain adaption approach. In: ICML (2012)Google Scholar