Tubular Structure Filtering by Ranking Orientation Responses of Path Operators

  • Odyssée Merveille
  • Hugues Talbot
  • Laurent Najman
  • Nicolas Passat
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8690)

Abstract

Thin objects in 3D volumes, for instance vascular networks in medical imaging or various kinds of fibres in materials science, have been of interest for some time to computer vision. Particularly, tubular objects are everywhere elongated in one principal direction – which varies spatially – and are thin in the other two perpendicular directions. Filters for detecting such structures use for instance an analysis of the three principal directions of the Hessian, which is a local feature. In this article, we present a low-level tubular structure detection filter. This filter relies on paths, which are semi-global features that avoid any blurring effect induced by scale-space convolution. More precisely, our filter is based on recently developed morphological path operators. These require sampling only in a few principal directions, are robust to noise and do not assume feature regularity. We show that by ranking the directional response of this operator, we are further able to efficiently distinguish between blob, thin planar and tubular structures. We validate this approach on several applications, both from a qualitative and a quantitative point of view, demonstrating noise robustness and an efficient response on tubular structures.

Keywords

mathematical morphology non-linear filtering path operators thin structures 3D imaging 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bauer, C., Bischof, H.: A novel approach for detection of tubular objects and its application to medical image analysis. In: Rigoll, G. (ed.) DAGM 2008. LNCS, vol. 5096, pp. 163–172. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  2. 2.
    Bennink, H.E., van Assen, H.C., Streekstra, G.J., ter Wee, R., Spaan, J.A.E., ter Haar Romeny, B.M.: A novel 3D multi-scale lineness filter for vessel detection. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007, Part II. LNCS, vol. 4792, pp. 436–443. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  3. 3.
    Bismuth, V., Vaillant, R., Talbot, H., Najman, L.: Curvilinear structure enhancement with the polygonal path image–application to guide-wire segmentation in X-ray fluoroscopy. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012, Part II. LNCS, vol. 7511, pp. 9–16. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  4. 4.
    Buckley, M., Talbot, H.: Flexible linear openings and closings. In: ISMM. Computer Imaging and Vision, vol. 18, pp. 109–118. Kluwer (2000)Google Scholar
  5. 5.
    Chapman, B.E., Parker, D.L.: 3D multi-scale vessel enhancement filtering based on curvature measurements: Application to time-of-flight MRA. Med. Image Anal. 9, 191–208 (2005)CrossRefGoogle Scholar
  6. 6.
    Cohen, L., Deschamps, T.: Segmentation of 3D tubular objects with adaptive front propagation and minimal tree extraction for 3D medical imaging. Comput. Meth. Biomech. Biomed. Eng. 10, 289–305 (2007)CrossRefGoogle Scholar
  7. 7.
    Cokelaer, F., Talbot, H., Chanussot, J.: Efficient robust d-dimensional path operators. J. Sel. Top. Signal 6, 830–839 (2012)CrossRefGoogle Scholar
  8. 8.
    Danielsson, P.E., Lin, Q., Ye, Q.Z.: Efficient detection of second-degree variations in 2D and 3D images. J. Vis. Commun. Image R 12, 255–305 (2001)CrossRefGoogle Scholar
  9. 9.
    Derpanis, K.G., Gryn, J.M.: Three-dimensional nth derivative of Gaussian separable steerable filters. In: ICIP, vol. 3, pp. 553–556 (2005)Google Scholar
  10. 10.
    Dokládal, P., Jeulin, D.: 3-D extraction of fibres from microtomographic images of fibre-reinforced composite materials. In: Wilkinson, M.H.F., Roerdink, J.B.T.M. (eds.) ISMM 2009. LNCS, vol. 5720, pp. 126–136. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  11. 11.
    Du, Y.P., Parker, D.L., Davis, W.L.: Vessel enhancement filtering in three-dimensional MR angiography. JMRI-J Magn. Reson. Im. 5, 353–359 (1995)CrossRefGoogle Scholar
  12. 12.
    Dufour, A., Tankyevych, O., Naegel, B., Talbot, H., Ronse, C., Baruthio, J., Dokládal, P., Passat, N.: Filtering and segmentation of 3D angiographic data: Advances based on mathematical morphology. Med. Image. Anal. 17, 147–164 (2013)CrossRefGoogle Scholar
  13. 13.
    Frangi, A.F., Niessen, W.J., Vincken, K.L., Viergever, M.A.: Multiscale vessel enhancement filtering. In: Wells, W.M., Colchester, A.C.F., Delp, S.L. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 130–137. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  14. 14.
    Freeman, W.T., Adelson, E.H.: The design and use of steerable filters. IEEE T. Pattern Anal. 13, 891–906 (1991)CrossRefGoogle Scholar
  15. 15.
    González, G., Aguet, F., Fleuret, F., Unser, M., Fua, P.: Steerable features for statistical 3D dendrite detection. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009, Part II. LNCS, vol. 5762, pp. 625–632. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  16. 16.
    Heijmans, H.J.A.M., Buckley, M., Talbot, H.: Path openings and closings. J. Math. Imaging Vis. 22, 107–119 (2005)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Koller, T., Gerig, G., Székely, G., Dettwiler, D.: Multiscale detection of curvilinear structures in 2D and 3D image data. In: ICCV, pp. 864–869 (1995)Google Scholar
  18. 18.
    Krissian, K., Malandain, G., Ayache, N., Vaillant, R., Trousset, Y.: Model-based detection of tubular structures in 3D images. Comput. Vis. Image Und. 80, 130–171 (2000)CrossRefMATHGoogle Scholar
  19. 19.
    Law, M.W.K., Chung, A.C.S.: Three dimensional curvilinear structure detection using optimally oriented flux. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part IV. LNCS, vol. 5305, pp. 368–382. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  20. 20.
    Lesage, D., Angelini, E.D., Bloch, I., Funka-Lea, G.: A review of 3D vessel lumen segmentation techniques: Models, features and extraction schemes. Med. Image Anal. 13, 819–845 (2009)CrossRefGoogle Scholar
  21. 21.
    Lorenz, C., Carlsen, I.C., Buzug, T.M., Fassnacht, C., Weese, J.: Multi-scale line segmentation with automatic estimation of width, contrast and tangential direction in 2D and 3D medical images. In: Troccaz, J., Mösges, R., Grimson, W.E.L. (eds.) CVRMed-MRCAS 1997, CVRMed 1997, and MRCAS 1997. LNCS, vol. 1205, pp. 233–242. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  22. 22.
    Luengo Hendriks, C.L.: Constrained and dimensionality-independent path openings. IEEE T. Image Process. 19, 1587–1595 (2010)CrossRefMathSciNetGoogle Scholar
  23. 23.
    Manniesing, R., Viergever, M.A., Niessen, W.J.: Vessel enhancing diffusion: A scale space representation of vessel structures. Med. Image Anal. 10, 815–825 (2006)CrossRefGoogle Scholar
  24. 24.
    Miyazaki, M., Lee, V.S.: Nonenhanced MR angiography. Radiology 248, 20–43 (2008)CrossRefGoogle Scholar
  25. 25.
    Naegel, B., Passat, N., Ronse, C.: Grey-level hit-or-miss transforms—Part II: Application to angiographic image processing. Pattern Recogn. 40, 648–658 (2007)CrossRefMATHGoogle Scholar
  26. 26.
    Najman, L., Talbot, H. (eds.): Mathematical morphology: From theory to applications. ISTE/John Wiley & Sons (2010)Google Scholar
  27. 27.
    Orkisz, M., Hernández-Hoyos, M., Douek, P., Magnin, I.: Advances of blood vessel morphology analysis in 3D Magnetic Resonance Images. Machine Graph. Vis. 9, 463–472 (2000)Google Scholar
  28. 28.
    Rouchdy, Y., Cohen, L.D.: Image segmentation by geodesic voting. Application to the extraction of tree structures from confocal microscope images. In: ICPR, pp. 1–5 (2008)Google Scholar
  29. 29.
    Sato, Y., Nakajima, S., Atsumi, H., Koller, T., Gerig, G., Yoshida, S., Kikinis, R.: 3D multi-scale line filter for segmentation and visualization of curvilinear structures in medical images. In: Troccaz, J., Mösges, R., Grimson, W.E.L. (eds.) CVRMed-MRCAS 1997, CVRMed 1997, and MRCAS 1997. LNCS, vol. 1205, pp. 213–222. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  30. 30.
    Schaap, M., Metz, C.T., van Walsum, T., van der Giessen, A.G., Weustink, A.C., Mollet, N.R.A., Bauer, C., Bogunović, H., Castro, C., Deng, X., Dikici, E., O’Donnell, T., Frenay, M., Friman, O., Hernández Hoyos, M., Kitslaar, P.H., Krissian, K., Kühnel, C., Luengo-Oroz, M.A., Orkisz, M., Smedby, Ö., Styner, M., Szymczak, A., Tek, H., Wang, C., Warfield, S.K., Zambal, S., Zhang, Y., Krestin, G.P., Niessen, W.J.: Standardized evaluation methodology and reference database for evaluating coronary artery centerline extraction algorithms. Med. Image Anal. 13, 701–714 (2009)CrossRefGoogle Scholar
  31. 31.
    Soille, P., Breen, E., Jones, R.: Recursive implementation of erosions and dilations along discrete lines at arbitrary angles. IEEE T. Pattern Anal. 18, 562–567 (1996)CrossRefGoogle Scholar
  32. 32.
    Soille, P., Talbot, H.: Directional morphological filtering. IEEE T. Pattern Anal. 23, 1313–1329 (2001)CrossRefGoogle Scholar
  33. 33.
    Talbot, H., Appleton, B.: Efficient complete and incomplete path openings and closings. Image Vision Comput. 25, 416–425 (2007)CrossRefGoogle Scholar
  34. 34.
    Tankyevych, O., Talbot, H., Passat, N.: Semi-connections and hierarchies. In: Hendriks, C.L.L., Borgefors, G., Strand, R. (eds.) ISMM 2013. LNCS, vol. 7883, pp. 159–170. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  35. 35.
    Tankyevych, O., Talbot, H., Passat, N., Musacchio, M., Lagneau, M.: Angiographic image analysis. In: Medical Image Processing: Techniques and Applications, ch. 6, pp. 115–144. Springer (2011)Google Scholar
  36. 36.
    Tankyevych, O., Talbot, H., Dokládal, P.: Curvilinear morpho-Hessian filter. In: ISBI, pp. 1011–1014 (2008)Google Scholar
  37. 37.
    Vincent, L.: Morphological grayscale reconstruction in image analysis: Applications and efficient algorithms. IEEE T. Image Process. 2, 176–201 (1993)CrossRefGoogle Scholar
  38. 38.
    Vincent, L.: Minimal path algorithms for the robust detection of linear features in gray images. In: ISMM. Computer Imaging and Vision, vol. 12, pp. 331–338. Kluwer (1998)Google Scholar
  39. 39.
    Wilkinson, M.H.F., Westenberg, M.A.: Shape preserving filament enhancement filtering. In: Niessen, W.J., Viergever, M.A. (eds.) MICCAI 2001. LNCS, vol. 2208, pp. 770–777. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  40. 40.
    Xiao, C., Staring, M., Shamonin, D.P., Reiber, J.H.C., Stolk, J., Stoel, B.C.: A strain energy filter for 3D vessel enhancement with application to pulmonary CT images. Med. Image Anal. 15, 112–124 (2011)CrossRefGoogle Scholar
  41. 41.
    Xiao, C., Staring, M., Wang, Y., Shamonin, D.P., Stoel, B.C.: Multiscale bi-Gaussian filter for adjacent curvilinear structures detection with application to vasculature images. IEEE T. Image Process. 22, 174–188 (2013)CrossRefMathSciNetGoogle Scholar
  42. 42.
    Zana, F., Klein, J.C.: Segmentation of vessel-like patterns using mathematical morphology and curvature evaluation. IEEE T. Image Process. 10, 1010–1019 (2001)CrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Odyssée Merveille
    • 1
    • 2
  • Hugues Talbot
    • 1
  • Laurent Najman
    • 1
  • Nicolas Passat
    • 2
  1. 1.Université Paris-Est, LIGM, UPEMLV-ESIEE-CNRSFrance
  2. 2.Université de Reims Champagne-Ardenne, CReSTICFrance

Personalised recommendations