Advertisement

Let There Be Color! Large-Scale Texturing of 3D Reconstructions

  • Michael Waechter
  • Nils Moehrle
  • Michael Goesele
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8693)

Abstract

3D reconstruction pipelines using structure-from-motion and multi-view stereo techniques are today able to reconstruct impressive, large-scale geometry models from images but do not yield textured results. Current texture creation methods are unable to handle the complexity and scale of these models. We therefore present the first comprehensive texturing framework for large-scale, real-world 3D reconstructions. Our method addresses most challenges occurring in such reconstructions: the large number of input images, their drastically varying properties such as image scale, (out-of-focus) blur, exposure variation, and occluders (e.g., moving plants or pedestrians). Using the proposed technique, we are able to texture datasets that are several orders of magnitude larger and far more challenging than shown in related work.

Keywords

Input Image Data Term Support Region Photo Collection Smoothness Term 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Agarwal, S., Snavely, N., Simon, I., Seitz, S.M., Szeliski, R.: Building Rome in a day. In: ICCV (2009)Google Scholar
  2. 2.
    Allène, C., Pons, J.P., Keriven, R.: Seamless image-based texture atlases using multi-band blending. In: ICPR (2008)Google Scholar
  3. 3.
    Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. PAMI 23 (2001)Google Scholar
  4. 4.
    Buehler, C., Bosse, M., McMillan, L., Gortler, S., Cohen, M.: Unstructured lumigraph rendering. In: SIGGRAPH (2001)Google Scholar
  5. 5.
    Callieri, M., Cignoni, P., Corsini, M., Scopigno, R.: Masked photo blending: Mapping dense photographic dataset on high-resolution sampled 3D models. Computers & Graphics 32 (2008)Google Scholar
  6. 6.
    Chen, Z., Zhou, J., Chen, Y., Wang, G.: 3D texture mapping in multi-view reconstruction. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Fowlkes, C., Wang, S., Choi, M.-H., Mantler, S., Schulze, J., Acevedo, D., Mueller, K., Papka, M. (eds.) ISVC 2012, Part I. LNCS, vol. 7431, pp. 359–371. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  7. 7.
    Frahm, J.-M., Fite-Georgel, P., Gallup, D., Johnson, T., Raguram, R., Wu, C., Jen, Y.-H., Dunn, E., Clipp, B., Lazebnik, S., Pollefeys, M.: Building rome on a cloudless day. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part IV. LNCS, vol. 6314, pp. 368–381. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Furukawa, Y., Curless, B., Seitz, S.M., Szeliski, R.: Towards Internet-scale multi-view stereo. In: CVPR (2010)Google Scholar
  9. 9.
    Gal, R., Wexler, Y., Ofek, E., Hoppe, H., Cohen-Or, D.: Seamless montage for texturing models. Computer Graphics Forum 29 (2010)Google Scholar
  10. 10.
    Garcia-Dorado, I., Demir, I., Aliaga, D.G.: Automatic urban modeling using volumetric reconstruction with surface graph cuts. Computers & Graphics 37 (2013)Google Scholar
  11. 11.
    Geva, A.: ColDet 3D collision detection, http://sourceforge.net/projects/coldet
  12. 12.
    Goldluecke, B., Aubry, M., Kolev, K., Cremers, D.: A super-resolution framework for high-accuracy multiview reconstruction. IJCV (2013)Google Scholar
  13. 13.
    Grammatikopoulos, L., Kalisperakis, I., Karras, G., Petsa, E.: Automatic multi-view texture mapping of 3D surface projections. In: 3D-ARCH (2007)Google Scholar
  14. 14.
    Guennebaud, G., Jacob, B., et al.: Eigen v3 (2010), http://eigen.tuxfamily.org
  15. 15.
    Lempitsky, V., Ivanov, D.: Seamless mosaicing of image-based texture maps. In: CVPR (2007)Google Scholar
  16. 16.
    Pérez, P., Gangnet, M., Blake, A.: Poisson image editing. ACM Transactions on Graphics 22(3) (2003)Google Scholar
  17. 17.
    Seitz, S.M., Curless, B., Diebel, J., Scharstein, D., Szeliski, R.: A comparison and evaluation of multi-view stereo reconstruction algorithms. In: CVPR (2006)Google Scholar
  18. 18.
    Shan, Q., Adams, R., Curless, B., Furukawa, Y., Seitz, S.M.: The visual Turing test for scene reconstruction. In: 3DV (2013)Google Scholar
  19. 19.
    Sinha, S.N., Steedly, D., Szeliski, R., Agrawala, M., Pollefeys, M.: Interactive 3D architectural modeling from unordered photo collections. In: SIGGRAPH Asia (2008)Google Scholar
  20. 20.
    Snavely, N., Seitz, S.M., Szeliski, R.: Photo tourism: Exploring photo collections in 3D. In: SIGGRAPH (2006)Google Scholar
  21. 21.
    Stamos, I., Allen, P.K.: Geometry and texture recovery of scenes of large scale. Computer Vision and Image Understanding 88(2) (2002)Google Scholar
  22. 22.
    Tan, Y.K.A., Kwoh, L.K., Ong, S.H.: Large scale texture mapping of building facades. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 37 (2008)Google Scholar
  23. 23.
    Velho, L., Sossai Jr., J.: Projective texture atlas construction for 3D photography. The Visual Computer 23 (2007)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Michael Waechter
    • 1
  • Nils Moehrle
    • 1
  • Michael Goesele
    • 1
  1. 1.TU DarmstadtGermany

Personalised recommendations