Robust Bundle Adjustment Revisited

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8693)


In this work we address robust estimation in the bundle adjustment procedure. Typically, bundle adjustment is not solved via a generic optimization algorithm, but usually cast as a nonlinear least-squares problem instance. In order to handle gross outliers in bundle adjustment the least-squares formulation must be robustified. We investigate several approaches to make least-squares objectives robust while retaining the least-squares nature to use existing efficient solvers. In particular, we highlight a method based on lifting a robust cost function into a higher dimensional representation, and show how the lifted formulation is efficiently implemented in a Gauss-Newton framework. In our experiments the proposed lifting-based approach almost always yields the best (i.e. lowest) objectives.


Bundle adjustment nonlinear least-squares optimization robust cost function 

Supplementary material

978-3-319-10602-1_50_MOESM1_ESM.pdf (122 kb)
Electronic Supplementary Material (PDF 123 KB)


  1. 1.
    Agarwal, P., Tipaldi, G.D., Spinello, L., Stachniss, C., Burgard, W.: Robust map optimization using dynamic covariance scaling. In: 2013 IEEE International Conference on Robotics and Automation (ICRA), pp. 62–69. IEEE (2013)Google Scholar
  2. 2.
    Agarwal, S., Furukawa, Y., Snavely, N., Simon, I., Curless, B., Seitz, S.M., Szeliski, R.: Building rome in a day. Communications of the ACM 54(10), 105–112 (2011)CrossRefGoogle Scholar
  3. 3.
    Agarwal, S., Mierle, K.: Others: Ceres solver,
  4. 4.
    Agarwal, S., Snavely, N., Seitz, S.M., Szeliski, R.: Bundle adjustment in the large. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part II. LNCS, vol. 6312, pp. 29–42. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Black, M.J., Rangarajan, A.: On the unification of line processes, outlier rejection, and robust statistics with applications in early vision. IJCV 19(1), 57–91 (1996)CrossRefGoogle Scholar
  6. 6.
    Byröd, M., Åström, K.: Conjugate gradient bundle adjustment. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part II. LNCS, vol. 6312, pp. 114–127. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Chan, T.F., Esedoglu, S., Nikolova, M.: Algorithms for finding global minimizers of image segmentation and denoising models. SIAM Journal on Applied Mathematics 66(5), 1632–1648 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Chen, Y., Davis, T., Hager, W., Rajamanickam, S.: Algorithm 887: CHOLMOD, supernodal sparse Cholesky factorization and update/downdate. ACM Transactions on Mathematical Software 35(3), 1–14 (2008)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Engels, C., Stewénius, H., Nistér, D.: Bundle adjustment rules. In: Photogrammetric Computer Vision, PCV (2006)Google Scholar
  10. 10.
    Geman, D., Reynolds, G.: Constrained restoration and the recovery of discontinuities. IEEE Transactions on Pattern Analysis and Machine Intelligence 14(3), 367–383 (1992)CrossRefGoogle Scholar
  11. 11.
    Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press (2000)Google Scholar
  12. 12.
    Indelman, V., Roberts, R., Beall, C., Dellaert, F.: Incremental light bundle adjustment. In: Proc. BMVC (2012)Google Scholar
  13. 13.
    Ishikawa, H.: Exact optimization for Markov random fields with convex priors. IEEE Trans. Pattern Anal. Mach. Intell. 25(10), 1333–1336 (2003)Google Scholar
  14. 14.
    Jeong, Y., Nister, D., Steedly, D., Szeliski, R., Kweon, I.S.: Pushing the envelope of modern methods for bundle adjustment. IEEE Trans. Pattern Anal. Mach. Intell. 34(8), 1605–1617 (2012)Google Scholar
  15. 15.
    Jian, Y.D., Balcan, D.C., Dellaert, F.: Generalized subgraph preconditioners for large-scale bundle adjustment. In: Proc. ICCV (2011)Google Scholar
  16. 16.
    Levenberg, K.: A method for the solution of certain non-linear problems in least squares. Quarterly of Applied Mathematics 2(2), 164–168 (1944)zbMATHMathSciNetGoogle Scholar
  17. 17.
    Li, H., Sumner, R.W., Pauly, M.: Global correspondence optimization for non-rigid registration of depth scans. In: Proc. SGP, pp. 1421–1430. Eurographics Association (2008)Google Scholar
  18. 18.
    Lourakis, M.I., Argyros, A.A.: Is levenberg-marquardt the most efficient optimization algorithm for implementing bundle adjustment? In: ICCV, vol. 2, pp. 1526–1531. IEEE (2005)Google Scholar
  19. 19.
    Marquardt, D.: An algorithm for the least-squares estimation of nonlinear parameters. SIAM Journal of Applied Mathematics 11(2), 431–441 (1963)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Steffen, R., Frahm, J.-M., Förstner, W.: Relative bundle adjustment based on trifocal constraints. In: Kutulakos, K.N. (ed.) ECCV 2010 Workshops, Part II. LNCS, vol. 6554, pp. 282–295. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  21. 21.
    Sunderhauf, N., Protzel, P.: Switchable constraints for robust pose graph slam. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1879–1884. IEEE (2012)Google Scholar
  22. 22.
    Triggs, B., McLauchlan, P.F., Hartley, R.I., Fitzgibbon, A.W.: Bundle adjustment – A modern synthesis. In: Triggs, B., Zisserman, A., Szeliski, R. (eds.) ICCV-WS 1999. LNCS, vol. 1883, pp. 298–372. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  23. 23.
    Zhang, J., Boutin, M., Aliaga, D.: Robust bundle adjustment for structure from motion. In: Proc. ICIP (2006)Google Scholar
  24. 24.
    Zollhöfer, M., Nießner, M., Izadi, S., Rehmann, C., Zach, C., Fisher, M., Wu, C., Fitzgibbon, A., Loop, C., Theobalt, C., Stamminger, M.: Real-time non-rigid reconstruction using an rgb-d camera. ACM Transactions on Graphics, TOG (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Toshiba Research EuropeCambridgeUK

Personalised recommendations