Microsoft COCO: Common Objects in Context

  • Tsung-Yi Lin
  • Michael Maire
  • Serge Belongie
  • James Hays
  • Pietro Perona
  • Deva Ramanan
  • Piotr Dollár
  • C. Lawrence Zitnick
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8693)

Abstract

We present a new dataset with the goal of advancing the state-of-the-art in object recognition by placing the question of object recognition in the context of the broader question of scene understanding. This is achieved by gathering images of complex everyday scenes containing common objects in their natural context. Objects are labeled using per-instance segmentations to aid in precise object localization. Our dataset contains photos of 91 objects types that would be easily recognizable by a 4 year old. With a total of 2.5 million labeled instances in 328k images, the creation of our dataset drew upon extensive crowd worker involvement via novel user interfaces for category detection, instance spotting and instance segmentation. We present a detailed statistical analysis of the dataset in comparison to PASCAL, ImageNet, and SUN. Finally, we provide baseline performance analysis for bounding box and segmentation detection results using a Deformable Parts Model.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Tsung-Yi Lin
    • 1
  • Michael Maire
    • 2
  • Serge Belongie
    • 1
  • James Hays
    • 3
  • Pietro Perona
    • 2
  • Deva Ramanan
    • 4
  • Piotr Dollár
    • 5
  • C. Lawrence Zitnick
    • 5
  1. 1.CornellUSA
  2. 2.CaltechUSA
  3. 3.BrownUSA
  4. 4.UC IrvineUSA
  5. 5.Microsoft ResearchUSA

Personalised recommendations