Edge Boxes: Locating Object Proposals from Edges
Abstract
The use of object proposals is an effective recent approach for increasing the computational efficiency of object detection. We propose a novel method for generating object bounding box proposals using edges. Edges provide a sparse yet informative representation of an image. Our main observation is that the number of contours that are wholly contained in a bounding box is indicative of the likelihood of the box containing an object. We propose a simple box objectness score that measures the number of edges that exist in the box minus those that are members of contours that overlap the box’s boundary. Using efficient data structures, millions of candidate boxes can be evaluated in a fraction of a second, returning a ranked set of a few thousand top-scoring proposals. Using standard metrics, we show results that are significantly more accurate than the current state-of-the-art while being faster to compute. In particular, given just 1000 proposals we achieve over 96% object recall at overlap threshold of 0.5 and over 75% recall at the more challenging overlap of 0.7. Our approach runs in 0.25 seconds and we additionally demonstrate a near real-time variant with only minor loss in accuracy.
Keywords
object proposals object detection edge detectionReferences
- 1.Viola, P.A., Jones, M.J.: Robust real-time face detection. IJCV 57(2), 137–154 (2004)CrossRefGoogle Scholar
- 2.Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: CVPR (2005)Google Scholar
- 3.Felzenszwalb, P., Girshick, R., McAllester, D., Ramanan, D.: Object detection with discriminatively trained part based models. PAMI 32(9), 1627–1645 (2010)CrossRefGoogle Scholar
- 4.Alexe, B., Deselaers, T., Ferrari, V.: Measuring the objectness of image windows. PAMI 34(11) (2012)Google Scholar
- 5.Uijlings, J.R.R., van de Sande, K.E.A., Gevers, T., Smeulders, A.W.M.: Selective search for object recognition. IJCV (2013)Google Scholar
- 6.Carreira, J., Sminchisescu, C.: Cpmc: Automatic object segmentation using constrained parametric min-cuts. PAMI 34(7) (2012)Google Scholar
- 7.Rahtu, E., Kannala, J., Blaschko, M.: Learning a category independent object detection cascade. In: ICCV (2011)Google Scholar
- 8.Manen, S., Guillaumin, M., Van Gool, L., Leuven, K.: Prime object proposals with randomized prims algorithm. In: ICCV (2013)Google Scholar
- 9.Endres, I., Hoiem, D.: Category-independent object proposals with diverse ranking. PAMI (2014)Google Scholar
- 10.Rantalankila, P., Kannala, J., Rahtu, E.: Generating object segmentation proposals using global and local search. In: CVPR (2014)Google Scholar
- 11.Cheng, M.M., Zhang, Z., Lin, W.Y., Torr, P.: BING: Binarized normed gradients for objectness estimation at 300fps. In: CVPR (2014)Google Scholar
- 12.Wang, X., Yang, M., Zhu, S., Lin, Y.: Regionlets for generic object detection. In: ICCV (2013)Google Scholar
- 13.Girshick, R.B., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: CVPR (2014)Google Scholar
- 14.Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. In: CVPR (2009)Google Scholar
- 15.Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The pascal visual object classes (voc) challenge. IJCV 88(2), 303–338 (2010)Google Scholar
- 16.Dollár, P., Zitnick, C.L.: Structured forests for fast edge detection. In: ICCV (2013)Google Scholar
- 17.Marr, D.: Vision: A computational investigation into the human representation and processing of visual information. Inc., New York, NY (1982)Google Scholar
- 18.Eitz, M., Hays, J., Alexa, M.: How do humans sketch objects? ACM Transactions Graphics 31(4) (2012)Google Scholar
- 19.Dollár, P., Zitnick, C.L.: Fast edge detection using structured forests. CoRR abs/1406.5549 (2014)Google Scholar
- 20.Deselaers, T., Alexe, B., Ferrari, V.: Localizing objects while learning their appearance. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part IV. LNCS, vol. 6314, pp. 452–466. Springer, Heidelberg (2010)CrossRefGoogle Scholar
- 21.Siva, P., Xiang, T.: Weakly supervised object detector learning with model drift detection. In: ICCV (2011)Google Scholar
- 22.Gu, C., Lim, J.J., Arbeláez, P., Malik, J.: Recognition using regions. In: CVPR (2009)Google Scholar
- 23.Hoiem, D., Efros, A.A., Hebert, M.: Geometric context from a single image. In: ICCV (2005)Google Scholar
- 24.Russell, B.C., Freeman, W.T., Efros, A.A., Sivic, J., Zisserman, A.: Using multiple segmentations to discover objects and their extent in image collections. In: CVPR (2006)Google Scholar
- 25.Malisiewicz, T., Efros, A.A.: Improving spatial support for objects via multiple segmentations. In: BMVC (2007)Google Scholar
- 26.Hosang, J., Benenson, R., Schiele, B.: How good are detection proposals, really? In: BMVC (2014)Google Scholar
- 27.Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based image segmentation. IJCV 59(2) (2004)Google Scholar
- 28.Canny, J.: A computational approach to edge detection. PAMI (6), 679–698 (1986)Google Scholar