Soft Cost Aggregation with Multi-resolution Fusion

  • Xiao Tan
  • Changming Sun
  • Dadong Wang
  • Yi Guo
  • Tuan D. Pham
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8693)


This paper presents a simple and effective cost volume aggregation framework for addressing pixels labeling problem. Our idea is based on the observation that incorrect labelings are greatly reduced in cost volume aggregation results from low resolutions. However, image details may be lost in the low resolution results. To take advantage of the results from low resolution for reducing these incorrect labelings while preserving details, we propose a multi-resolution cost aggregation method (MultiAgg) by using a soft fusion scheme based on min-convolution. We implement our MultiAgg in applications on stereo matching and interactive image segmentation. Experimental results show that our method significantly outperforms conventional cost aggregation methods in labeling accuracy. Moreover, although MultiAgg is a simple and straight-forward method, it produces results which are close to or even better than those from iterative methods based on global optimization.


Multi-resolution fusion Cost aggregation Stereo matching Interactive segmentation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
  2. 2.
    Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical image segmentation. PAMI 33(5), 898–916 (2011)CrossRefGoogle Scholar
  3. 3.
    Bleyer, M., Rhemann, C., Rother, C.: Patchmatch stereo-stereo matching with slanted support windows. BMVC 11, 1–11 (2011)Google Scholar
  4. 4.
    Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient belief propagation for early vision. IJCV 70(1), 41–54 (2006)CrossRefGoogle Scholar
  5. 5.
    Felzenszwalb, P.F., Huttenlocher, D.P.: Distance transforms of sampled functions. Theory of Computing 8(1), 415–428 (2012)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Hosni, A., Bleyer, M., Gelautz, M., Rhemann, C.: Local stereo matching using geodesic support weights. In: ICIP, pp. 2093–2096 (2009)Google Scholar
  7. 7.
    Lei, C., Yang, Y.H.: Optical flow estimation on coarse-to-fine region-trees using discrete optimization. In: ICCV, pp. 1562–1569 (2009)Google Scholar
  8. 8.
    Lu, J., Shi, K., Min, D., Lin, L., Do, M.N.: Cross-based local multipoint filtering. In: CVPR, pp. 430–437 (2012)Google Scholar
  9. 9.
    Lu, J., Yang, H., Min, D., Do, M.: Patchmatch filter: Efficient edge-aware filtering meets randomized search for fast correspondence field estimation. In: CVPR, pp. 1854–1861 (2013)Google Scholar
  10. 10.
    Mei, X., Sun, X., Zhou, M., Jiao, S., Wang, H., Zhang, X.: On building an accurate stereo matching system on graphics hardware. In: ICCV, pp. 467–474 (2011)Google Scholar
  11. 11.
    Rhemann, C., Hosni, A., Bleyer, M., Rother, C., Gelautz, M.: Fast cost-volume filtering for visual correspondence and beyond. In: CVPR, pp. 3017–3024 (2011)Google Scholar
  12. 12.
    Rother, C., Kolmogorov, V., Blake, A.: GrabCut: Interactive foreground extraction using iterated graph cuts. ACM Transactions on Graphics (TOG) 23, 309–314 (2004)CrossRefGoogle Scholar
  13. 13.
    Szeliski, R., Zabih, R., Scharstein, D., Veksler, O., Kolmogorov, V., Agarwala, A., Tappen, M., Rother, C.: A comparative study of energy minimization methods for Markov random fields with smoothness-based priors. PAMI 30(6), 1068–1080 (2008)CrossRefGoogle Scholar
  14. 14.
    Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: ICCV, pp. 839–846 (1998)Google Scholar
  15. 15.
    Willsky, A.S.: Multiresolution Markov models for signal and image processing. Proceedings of the IEEE 90(8), 1396–1458 (2002)CrossRefGoogle Scholar
  16. 16.
    Yang, Q.: A non-local cost aggregation method for stereo matching. In: CVPR, pp. 1402–1409 (2012)Google Scholar
  17. 17.
    Yang, Q.: Recursive bilateral filtering. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part I. LNCS, vol. 7572, pp. 399–413. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  18. 18.
    Yang, Q., Tan, K.H., Ahuja, N.: Real-time O(1) bilateral filtering. In: CVPR, pp. 557–564 (2009)Google Scholar
  19. 19.
    Yang, Q., Wang, L., Yang, R., Stewénius, H., Nistér, D.: Stereo matching with color-weighted correlation, hierarchical belief propagation, and occlusion handling. PAMI 31(3), 492–504 (2009)CrossRefGoogle Scholar
  20. 20.
    Yang, R., Pollefeys, M.: Multi-resolution real-time stereo on commodity graphics hardware. In: CVPR, vol. 1, pp. I–211 (2003)Google Scholar
  21. 21.
    Yoon, K.J., Kweon, I.S.: Adaptive support-weight approach for correspondence search. PAMI 28(4), 650–656 (2006)CrossRefGoogle Scholar
  22. 22.
    Zhao, Y., Taubin, G.: Real-time stereo on GPGPU using progressive multi-resolution adaptive windows. Image and Vision Computing 29(6), 420–432 (2011)CrossRefGoogle Scholar
  23. 23.
    Zhu, S., Zhang, L., Jin, H.: A locally linear regression model for boundary preserving regularization in stereo matching. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part V. LNCS, vol. 7576, pp. 101–115. Springer, Heidelberg (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Xiao Tan
    • 1
    • 2
  • Changming Sun
    • 1
  • Dadong Wang
    • 1
  • Yi Guo
    • 1
  • Tuan D. Pham
    • 3
  1. 1.CSIRO Computational InformaticsNorth RydeAustralia
  2. 2.The University of New South WalesCanberraAustralia
  3. 3.The University of AizuFukushimaJapan

Personalised recommendations