Advertisement

Unfolding an Indoor Origami World

  • David Ford Fouhey
  • Abhinav Gupta
  • Martial Hebert
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8694)

Abstract

In this work, we present a method for single-view reasoning about 3D surfaces and their relationships. We propose the use of mid-level constraints for 3D scene understanding in the form of convex and concave edges and introduce a generic framework capable of incorporating these and other constraints. Our method takes a variety of cues and uses them to infer a consistent interpretation of the scene. We demonstrate improvements over the state-of-the art and produce interpretations of the scene that link large planar surfaces.

Keywords

Grid Cell Indoor Scene Local Evidence Cluttered Scene Concave Edge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Choi, W., Chao, Y.W., Pantofaru, C., Savarese, S.: Understanding indoor scenes using 3D geometric phrases. In: CVPR (2013)Google Scholar
  2. 2.
    Clowes, M.: On seeing things. Artificial Intelligence 2, 79–116 (1971)CrossRefGoogle Scholar
  3. 3.
    Coughlan, J., Yuille, A.: The Manhattan world assumption: Regularities in scene statistics which enable Bayesian inference. In: NIPS (2000)Google Scholar
  4. 4.
    Del Pero, L., Bowdish, J., Fried, D., Kermgard, B., Hartley, E.L., Barnard, K.: Bayesian geometric modeling of indoor scenes. In: CVPR (2012)Google Scholar
  5. 5.
    Delage, E., Lee, H., Ng, A.Y.: A dynamic Bayesian network model for autonomous 3D reconstruction from a single indoor image. In: CVPR (2006)Google Scholar
  6. 6.
    Fouhey, D.F., Gupta, A., Hebert, M.: Data-driven 3D primitives for single image understanding. In: ICCV (2013)Google Scholar
  7. 7.
    Guo, R., Hoiem, D.: Support surface prediction in indoor scenes. In: ICCV (2013)Google Scholar
  8. 8.
    Gupta, A., Efros, A.A., Hebert, M.: Blocks world revisited: Image understanding using qualitative geometry and mechanics. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part IV. LNCS, vol. 6314, pp. 482–496. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    Gupta, S., Arbelaez, P., Malik, J.: Perceptual organization and recognition of indoor scenes from RGB-D images. In: CVPR (2013)Google Scholar
  10. 10.
    Hedau, V., Hoiem, D., Forsyth, D.: Recovering the spatial layout of cluttered rooms. In: ICCV (2009)Google Scholar
  11. 11.
    Hoiem, D., Efros, A., Hebert, M.: Automatic photo pop-up. In: SIGGRAPH (2005)Google Scholar
  12. 12.
    Hoiem, D., Efros, A., Hebert, M.: Geometric context from a single image. In: ICCV (2005)Google Scholar
  13. 13.
    Hoiem, D., Efros, A.A., Hebert, M.: Recovering occlusion boundaries from an image. IJCV 91(3), 328–346 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Huffman, D.: Impossible objects as nonsense sentences. Machine Intelligence 8, 475–492 (1971)Google Scholar
  15. 15.
    Jia, Z., Gallagher, A., Chang, Y.J., Chen, T.: A learning based framework for depth ordering. In: CVPR (2012)Google Scholar
  16. 16.
    Jia, Z., Gallagher, A., Saxena, A., Chen, T.: 3D-based reasoning with blocks, support, and stability. In: CVPR (2013)Google Scholar
  17. 17.
    Jiang, H., Xiao, J.: A linear approach to matching cuboids in RGBD images. In: CVPR (2013)Google Scholar
  18. 18.
    Kanade, T.: A theory of origami world. Artificial Intelligence 13(3) (1980)Google Scholar
  19. 19.
    Karsch, K., Liao, Z., Rock, J., Barron, J.T., Hoiem, D.: Boundary cues for 3D object shape recovery. In: CVPR (2013)Google Scholar
  20. 20.
    Karsch, K., Liu, C., Kang, S.B.: Depth extraction from video using non-parametric sampling. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part V. LNCS, vol. 7576, pp. 775–788. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  21. 21.
    Ladický, L., Shi, J., Pollefeys, M.: Pulling things out of perspective. In: CVPR (2014)Google Scholar
  22. 22.
    Lee, D.C., Gupta, A., Hebert, M., Kanade, T.: Estimating spatial layout of rooms using volumetric reasoning about objects and surfaces. In: NIPS (2010)Google Scholar
  23. 23.
    Lee, D.C., Hebert, M., Kanade, T.: Geometric reasoning for single image structure recovery. In: CVPR (2009)Google Scholar
  24. 24.
    Liu, M., Salzmann, M., He, X.: Discrete-continuous depth estimation from a single image. In: CVPR (2014)Google Scholar
  25. 25.
    Nitzberg, M., Mumford, D.: The 2.1D sketch. In: ICCV (1990)Google Scholar
  26. 26.
    Ramalingam, S., Kohli, P., Alahari, K., Torr, P.: Exact inference in multi-label CRFs with higher order cliques. In: CVPR (2008)Google Scholar
  27. 27.
    Ramalingam, S., Pillai, J., Jain, A., Taguchi, Y.: Manhattan junction catalogue for spatial reasoning of indoor scenes. In: CVPR (2013)Google Scholar
  28. 28.
    Roberts, L.: Machine perception of 3D solids. PhD Thesis (1965)Google Scholar
  29. 29.
    Saxena, A., Chung, S.H., Ng, A.Y.: Learning depth from single monocular images. In: NIPS (2005)Google Scholar
  30. 30.
    Saxena, A., Sun, M., Ng, A.Y.: Make3D: Learning 3D scene structure from a single still image. TPAMI 30(5), 824–840 (2008)Google Scholar
  31. 31.
    Schwing, A.G., Fidler, S., Pollefeys, M., Urtasun, R.: Box In the Box: Joint 3D Layout and Object Reasoning from Single Images. In: ICCV (2013)Google Scholar
  32. 32.
    Schwing, A.G., Urtasun, R.: Efficient Exact Inference for 3D Indoor Scene Understanding. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part VI. LNCS, vol. 7577, pp. 299–313. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  33. 33.
    Silberman, N., Hoiem, D., Kohli, P., Fergus, R.: Indoor segmentation and support inference from RGBD images. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part V. LNCS, vol. 7576, pp. 746–760. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  34. 34.
    Sugihara, K.: Machine Interpretation of Line Drawings. MIT Press (1986)Google Scholar
  35. 35.
    Xiang, Y., Savarese, S.: Estimating the aspect layout of object categories. In: CVPR (2012)Google Scholar
  36. 36.
    Xiao, J., Russell, B., Torralba, A.: Localizing 3D cuboids in single-view images. In: NIPS (2012)Google Scholar
  37. 37.
    Yamaguchi, K., Hazan, T., McAllester, D., Urtasun, R.: Continuous markov random fields for robust stereo estimation. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part V. LNCS, vol. 7576, pp. 45–58. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  38. 38.
    Yu, S.X., Zhang, H., Malik, J.: Inferring spatial layout from a single image via depth-ordered grouping. In: Workshop on Perceptual Organization (2008)Google Scholar
  39. 39.
    Zhang, J., Chen, K., Schwing, A.G., Urtasun, R.: Estimaing the 3D Layout of Indoor Scenes and its Clutter from Depth Sensors. In: ICCV (2013)Google Scholar
  40. 40.
    Zhao, Y., Zhu, S.: Image parsing via stochastic scene grammar. In: NIPS (2011)Google Scholar
  41. 41.
    Zhao, Y., Zhu, S.: Scene parsing by integrating function, geometry and appearance models. In: CVPR (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • David Ford Fouhey
    • 1
  • Abhinav Gupta
    • 1
  • Martial Hebert
    • 1
  1. 1.The Robotics InstituteCarnegie Mellon UniversityUSA

Personalised recommendations