Advertisement

Geometric Calibration of Micro-Lens-Based Light-Field Cameras Using Line Features

  • Yunsu Bok
  • Hae-Gon Jeon
  • In So Kweon
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8694)

Abstract

We present a novel method of geometric calibration of micro-lens-based light-field cameras. Accurate geometric calibration is a basis of various applications. Instead of using sub-aperture images, we utilize raw images directly for calibration. We select proper regions in raw images and extract line features from micro-lens images in those regions. For the whole process, we formulate a new projection model of micro-lens-based light-field cameras. It is transformed into a linear form using line features. We compute an initial solution of both intrinsic and extrinsic parameters by a linear computation, and refine it via a non-linear optimization. Experimental results show the accuracy of the correspondences between rays and pixels in raw images, estimated by the proposed method.

Keywords

Calibration plenoptic light-field cameras 

Supplementary material

978-3-319-10599-4_4_MOESM1_ESM.pdf (376 kb)
Electronic Supplementary Material (PDF 376 KB)

References

  1. 1.
    Adelson, E.H., Wang, J.Y.A.: Single lens stereo with a plenoptic camera. IEEE Transactions on Pattern Analysis and Machine Intelligence 14(2), 99–106 (1992)CrossRefGoogle Scholar
  2. 2.
    Birklbauer, C., Opelt, S., Bimber, O.: Rendering gigaray light fields. Computer Graphics Forum 32(2), 469–478 (2013)CrossRefGoogle Scholar
  3. 3.
    Bishop, T.E., Zanetti, S., Favaro, P.: Light field superresolution. In: International Conference on Computational Photography, pp. 1–9 (2009)Google Scholar
  4. 4.
    Dansereau, D.G., Mahon, I., Pizarro, O., Williams, S.B.: Plenoptic flow: Closed-form visual odometry for light field cameras. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4455–4462 (2011)Google Scholar
  5. 5.
    Dansereau, D.G., Pizarro, O., Williams, S.B.: Decoding, calibration and rectification for lenselet-based plenoptic cameras. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1027–1034 (2013)Google Scholar
  6. 6.
    Dong, F., Ieng, S.H., Savatier, X., Etienne-Cummings, R., Benosman, R.: Plenoptic cameras in real-time robotics. The International Journal of Robotics Research 32(2), 206–217 (2013)CrossRefGoogle Scholar
  7. 7.
    Georgiev, T., Lumsdaine, A.: Reducing plenoptic camera artifacts. Computer Graphics Forum 29(6), 1955–1968 (2010)CrossRefGoogle Scholar
  8. 8.
    Johannsen, O., Heinze, C., Goldluecke, B., Perwaß, C.: On the calibration of focused plenoptic cameras. In: Grzegorzek, M., Theobalt, C., Koch, R., Kolb, A. (eds.) Time-of-Flight and Depth Imaging. LNCS, vol. 8200, pp. 302–317. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  9. 9.
    Liang, C.K., Lin, T.H., Wong, B.Y., Liu, C., Chen, H.H.: Programmable aperture photography: multiplexed light field acquisition. ACM Transactions on Graphics 27(3), Article 55 (2008)Google Scholar
  10. 10.
    Ng, R., Levoy, M., Brédif, M., Duval, G., Horowitz, M., Hanrahan, P.: Light field photography with a hand-held plenoptic camera. Stanford University Computer Science Technical Report CSTR 2(11) (2005)Google Scholar
  11. 11.
    Perez Nava, F., Luke, J.: Simultaneous estimation of super-resolved depth and all-in-focus images from a plenoptic camera. In: 3DTV Conference: The True Vision-Capture, Transmission and Display of 3D Video, 2009, pp. 1–4 (2009)Google Scholar
  12. 12.
    Taguchi, Y., Agrawal, A., Veeraraghavan, A., Ramalingam, S., Raskar, R.: Axial-cones: modeling spherical catadioptric cameras for wide-angle light field rendering. ACM Transactions on Graphics 29(6), Article 172 (2010)Google Scholar
  13. 13.
    Tao, M.W., Hadap, S., Malik, J., Ramamoorthi, R.: Depth from combining defocus and correspondence using light-field cameras. In: IEEE International Conference on Computer Vision, pp. 673–680 (2013)Google Scholar
  14. 14.
    Vaish, V., Wilburn, B., Joshi, N., Levoy, M.: Using plane+parallax for calibrating dense camera arrays. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. I–2–I–9 (2004)Google Scholar
  15. 15.
    Veeraraghavan, A., Raskar, R., Agrawal, A., Mohan, A., Tumblin, J.: Dappled photography: Mask enhanced cameras for heterodyned light fields and coded aperture refocusing. ACM Transactions on Graphics 26(3), Article 69 (2007)Google Scholar
  16. 16.
    Wanner, S., Goldluecke, B.: Globally consistent depth labeling of 4d lightfields. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 41–48 (2012)Google Scholar
  17. 17.
    Wilburn, B., Joshi, N., Vaish, V., Talvala, E.V., Antunez, E., Barth, A., Adams, A., Horowitz, M., Levoy, M.: High performance imaging using large camera arrays. ACM Transactions on Graphics 24(3), 765–776 (2005)CrossRefGoogle Scholar
  18. 18.
    Zhang, Z.: Flexible camera calibration by viewing a plane from unknown orientations. In: IEEE International Conference on Computer Vision, pp. 666–673 (1999)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Yunsu Bok
    • 1
  • Hae-Gon Jeon
    • 1
  • In So Kweon
    • 1
  1. 1.KAISTKorea

Personalised recommendations