Discovering Object Classes from Activities

  • Abhilash Srikantha
  • Juergen Gall
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8694)

Abstract

In order to avoid an expensive manual labelling process or to learn object classes autonomously without human intervention, object discovery techniques have been proposed that extract visually similar objects from weakly labelled videos. However, the problem of discovering small or medium sized objects is largely unexplored. We observe that videos with activities involving human-object interactions can serve as weakly labelled data for such cases. Since neither object appearance nor motion is distinct enough to discover objects in such videos, we propose a framework that samples from a space of algorithms and their parameters to extract sequences of object proposals. Furthermore, we model similarity of objects based on appearance and functionality, which is derived from human and object motion. We show that functionality is an important cue for discovering objects from activities and demonstrate the generality of the model on three challenging RGB-D and RGB datasets.

Keywords

Object Discovery Human-Object Interaction RGBD Videos 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alexe, B., Deselaers, T., Ferrari, V.: What is an object? In: CVPR, pp. 73–80 (2010)Google Scholar
  2. 2.
    Blaschko, M.B., Vedaldi, A., Zisserman, A.: Simultaneous object detection and ranking with weak supervision. In: NIPS, pp. 235–243 (2010)Google Scholar
  3. 3.
    Bosch, A., Zisserman, A., Munoz, X.: Representing shape with a spatial pyramid kernel. In: ACM Int. Conf. on Image and Video Retrieval, pp. 401–408 (2007)Google Scholar
  4. 4.
    Brox, T., Malik, J.: Object segmentation by long term analysis of point trajectories. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part V. LNCS, vol. 6315, pp. 282–295. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Brox, T., Malik, J.: Large displacement optical flow: descriptor matching in variational motion estimation. PAMI 33(3), 500–513 (2011)CrossRefGoogle Scholar
  6. 6.
    Chum, O., Zisserman, A.: An exemplar model for learning object classes. In: CVPR, pp. 1–8 (2007)Google Scholar
  7. 7.
    Comaniciu, D., Meer, P.: Mean shift: a robust approach toward feature space analysis. PAMI 24(5), 603–619 (2002)CrossRefGoogle Scholar
  8. 8.
    Delaitre, V., Fouhey, D.F., Laptev, I., Sivic, J., Gupta, A., Efros, A.A.: Scene semantics from long-term observation of people. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part VI. LNCS, vol. 7577, pp. 284–298. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  9. 9.
    Deselaers, T., Alexe, B., Ferrari, V.: Localizing objects while learning their appearance. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part IV. LNCS, vol. 6314, pp. 452–466. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  10. 10.
    Everingham, M., Gool, L.V., Williams, C., Winn, J., Zisserman, A.: The pascal visual object classes (voc) challenge. IJCV 88, 303–338 (2010)CrossRefGoogle Scholar
  11. 11.
    Fathi, A., Ren, X., Rehg, J.: Learning to recognize objects in egocentric activities. In: CVPR, pp. 3281–3288 (2011)Google Scholar
  12. 12.
    Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based image segmentation. IJCV 59(2), 167–181 (2004)CrossRefGoogle Scholar
  13. 13.
    Filipovych, R., Ribeiro, E.: Recognizing primitive interactions by exploring actor-object states. In: CVPR (2008)Google Scholar
  14. 14.
    Human Body Analysis. In: Fossati, A., Gall, J., Grabner, H., Ren, X., Konolige, K. (eds.) Consumer Depth Cameras for Computer Vision. Springer (2013)Google Scholar
  15. 15.
    Fouhey, D.F., Delaitre, V., Gupta, A., Efros, A.A., Laptev, I., Sivic, J.: People watching: Human actions as a cue for single view geometry. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part V. LNCS, vol. 7576, pp. 732–745. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  16. 16.
    Gall, J., Fossati, A., van Gool, L.: Functional categorization of objects using real-time markerless motion capture. In: CVPR, pp. 1969–1976 (2011)Google Scholar
  17. 17.
    Gall, J., Yao, A., Razavi, N., Van Gool, L., Lempitsky, V.: Hough forests for object detection, tracking, and action recognition. PAMI 33(11), 2188–2202 (2011)CrossRefGoogle Scholar
  18. 18.
    Grabner, H., Gall, J., Van Gool, L.: What makes a chair a chair? In: CVPR, pp. 1529–1536 (2011)Google Scholar
  19. 19.
    Gupta, A., Davis, L.: Objects in action: An approach for combining action understanding and object perception. In: CVPR, pp. 1–8 (2007)Google Scholar
  20. 20.
    Gupta, A., Satkin, S., Efros, A.A., Hebert, M.: From 3D scene geometry to human workspace. In: CVPR, pp. 1961–1968 (2011)Google Scholar
  21. 21.
    Jiang, Y., Koppula, H., Saxena, A.: Hallucinated humans as the hidden context for labeling 3D scenes. In: CVPR, pp. 2993–3000 (2013)Google Scholar
  22. 22.
    Jones, M., Rehg, J.: Statistical color models with application to skin detection. IJCV 46(1), 81–96 (2002)CrossRefMATHGoogle Scholar
  23. 23.
    Kjellström, H., Romero, J., Kragic, D.: Visual object-action recognition: Inferring object affordances from human demonstration. CVIU 115, 81–90 (2010)Google Scholar
  24. 24.
    Kolmogorov, V.: Convergent tree-reweighted message passing for energy minimization. PAMI 28(10), 1568–1583 (2006)CrossRefGoogle Scholar
  25. 25.
    Koppula, H., Gupta, R., Saxena, A.: Learning human activities and object affordances from rgb-d videos. IJRR 32(8), 951–970 (2013)Google Scholar
  26. 26.
    Lee, Y.J., Grauman, K.: Learning the easy things first: Self-paced visual category discovery. In: CVPR, pp. 1721–1728 (2011)Google Scholar
  27. 27.
    Leistner, C., Godec, M., Schulter, S., Saffari, A., Werlberger, M., Bischof, H.: Improving classifiers with unlabeled weakly-related videos. In: CVPR, pp. 2753–2760 (2011)Google Scholar
  28. 28.
    Manen, S., Guillaumin, M., Van Gool, L.: Prime object proposals with randomized prim’s algorithm. In: ICCV, pp. 2536–2543 (2013)Google Scholar
  29. 29.
    Moore, D., Essa, I., Hayes, M.: Exploiting human actions and object context for recognition tasks. In: ICCV, pp. 80–86 (1999)Google Scholar
  30. 30.
    Ommer, B., Mader, T., Buhmann, J.: Seeing the Objects Behind the Dots: Recognition in Videos from a Moving Camera. IJCV 83, 57–71 (2009)CrossRefGoogle Scholar
  31. 31.
    Peursum, P., West, G., Venkatesh, S.: Combining image regions and human activity for indirect object recognition in indoor wide-angle views. In: ICCV, pp. 82–89 (2005)Google Scholar
  32. 32.
    Pieropan, A., Ek, C.H., Kjellstrom, H.: Functional object descriptors for human activity modeling. In: ICRA, pp. 1282–1289 (2013)Google Scholar
  33. 33.
    Prest, A., Leistner, C., Civera, J., Schmid, C., Ferrari, V.: Learning object class detectors from weakly annotated video. In: CVPR, pp. 3282–3289 (2012)Google Scholar
  34. 34.
    Ramanan, D., Forsyth, D.A., Barnard, K.: Building models of animals from video. PAMI 28(8), 1319–1334 (2006)CrossRefGoogle Scholar
  35. 35.
    Rohrbach, M., Amin, S., Andriluka, M., Schiele, B.: A database for fine grained activity detection of cooking activities. In: CVPR, pp. 1194–1201 (2012)Google Scholar
  36. 36.
    Rubinstein, M., Joulin, A., Kopf, J., Liu, C.: Unsupervised joint object discovery and segmentation in internet images. In: CVPR, pp. 1939–1946 (2013)Google Scholar
  37. 37.
    Schulter, S., Leistner, C., Roth, P.M., Bischof, H.: Unsupervised object discovery and segmentation in videos. In: BMVC, pp. 391–404 (2013)Google Scholar
  38. 38.
    Turek, M.W., Hoogs, A., Collins, R.: Unsupervised learning of functional categories in video scenes. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part II. LNCS, vol. 6312, pp. 664–677. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  39. 39.
    Tuytelaars, T., Lampert, C.H., Blaschko, M.B., Buntine, W.: Unsupervised object discovery: A comparison. IJCV 88, 284–302 (2010)CrossRefGoogle Scholar
  40. 40.
    Winn, J.M., Jojic, N.: Locus: Learning object classes with unsupervised segmentation. In: ICCV, pp. 756–763 (2005)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Abhilash Srikantha
    • 1
    • 2
  • Juergen Gall
    • 1
  1. 1.University of BonnGermany
  2. 2.MPI for Intelligent SystemsTuebingenGermany

Personalised recommendations