Free-Shape Polygonal Object Localization

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8694)


Polygonal objects are prevalent in man-made scenes. Early approaches to detecting them relied mainly on geometry while subsequent ones also incorporated appearance-based cues. It has recently been shown that this could be done fast by searching for cycles in graphs of line-fragments, provided that the cycle scoring function can be expressed as additive terms attached to individual fragments. In this paper, we propose an approach that eliminates this restriction. Given a weighted line-fragment graph, we use its cyclomatic number to partition the graph into managebly-sized sub-graphs that preserve nodes and edges with a high weight and are most likely to contain object contours. Object contours are then detected as maximally scoring elementary circuits enumerated in each sub-graph. Our approach can be used with any cycle scoring function and multiple candidates that share line fragments can be found. This is unlike in other approaches that rely on a greedy approach to finding candidates. We demonstrate that our approach significantly outperforms the state-of-the-art for the detection of building rooftops in aerial images and polygonal object categories from ImageNet.


Elementary Circuit Aerial Image Object Contour Graph Cycle Selective Search 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: Contour Detection and Hierarchical Image Segmentation. PAMI 33(5), 898–916 (2011)CrossRefGoogle Scholar
  2. 2.
    Ballard, D.H.: Generalizing the Hough Transform to Detect Arbitrary Shapes. PR 13(2), 111–122 (1981)zbMATHGoogle Scholar
  3. 3.
    Barnes, N., Loy, G., Shaw, D.: The Regular Polygon Detector. PR 43(3), 592–602 (2010)zbMATHGoogle Scholar
  4. 4.
    Belongie, S., Malik, J., Puzicha, J.: Shape Matching and Object Recognition Using Shape Contexts. PAMI 24(24), 509–522 (2002)CrossRefGoogle Scholar
  5. 5.
    Bignone, F., Henricsson, O., Fua, P., Stricker, M.: Automatic Extraction of Generic House Roofs from High Resolution Aerial Imagery. In: Buxton, B.F., Cipolla, R. (eds.) ECCV 1996. LNCS, vol. 1064, Springer, Heidelberg (1996)Google Scholar
  6. 6.
    Carreira, J., Sminchisescu, C.: Constrained Parametric Min-Cuts for Automatic Object Segmentation. In: CVPR 2010 (2010)Google Scholar
  7. 7.
    Chui, H., Rangarajan, A.: A New Point Matching Algorithm for Non-Rigid Registration. CVIU 89(2-3), 114–141 (2003)zbMATHGoogle Scholar
  8. 8.
    Cootes, T., Taylor, C., Cooper, D., Graham, J.: Active Shape Models: Their Training and Application. CVIU 61(1), 38–59 (2005)Google Scholar
  9. 9.
    Cox, I.J., Rehg, J.M., Hingorani, S.L.: A Bayesian Multiple Hypothesis Approach to Contour Segmentation. IJCV 11, 5–24 (1993)CrossRefGoogle Scholar
  10. 10.
    Crevier, D.: A Probabilistic Method for Extracting Chains of Collinear Segments. Image and Vision Computing (1999)Google Scholar
  11. 11.
    Dalal, N., Triggs, B.: Histograms of Oriented Gradients for Human Detection. In: CVPR 2005 (2005)Google Scholar
  12. 12.
    Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: A Large-Scale Hierarchical Image Database. In: CVPR 2009 (2009)Google Scholar
  13. 13.
    Dickson, W.: Feature Grouping in a Hierarchical Probabilistic Network. Image and Vision Computing (1991)Google Scholar
  14. 14.
    Diestel, R.: Graph Theory. Springer (2005)Google Scholar
  15. 15.
    Elder, J., Zucker, S.: Computing Contour Closure. In: Buxton, B.F., Cipolla, R. (eds.) ECCV 1996. LNCS, vol. 1064, Springer, Heidelberg (1996)Google Scholar
  16. 16.
    Elder, J.H., Krupnik, A., Johnston, L.A.: Contour Grouping with Prior Models. PAMI 25(25), 661–674 (2003)CrossRefGoogle Scholar
  17. 17.
    Endres, I., Hoiem, D.: Category Independent Object Proposals. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part V. LNCS, vol. 6315, pp. 575–588. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  18. 18.
    Felzenszwalb, P., Mcallester, D., Ramanan, D.: A Discriminatively Trained, Multiscale, Deformable Part Model. In: CVPR 2008 (2008)Google Scholar
  19. 19.
    Ferrari, V., Jurie, F., Schmid, C.: From Images to Shape Models for Object Detection. IJCV 87, 284–303 (2010)CrossRefGoogle Scholar
  20. 20.
    Guy, G., Medioni, G.: Inferring Global Perceptual Contours from Local Features. IJCV 20(1/2), 113–133 (1996)CrossRefGoogle Scholar
  21. 21.
    Huertas, A., Cole, W., Nevatia, R.: Detecting Runways in Complex Airport Scenes. CVGIP 51(2) (1990)Google Scholar
  22. 22.
    Izadi, M., Saeedi, P.: Three-Dimensional Polygonal Building Model Estimation from Single Satellite Images. IEEE Trans. Geosci. Remote Sens. (2012)Google Scholar
  23. 23.
    Johnson, D.B.: Finding All the Elementary Circuits of a Directed Graph. SIAM 4(1) (1975)Google Scholar
  24. 24.
    Jung, C.R., Schramm, R.: Rectangle Detection Based on a Windowed Hough Transform. In: CGIP 2004 (2004)Google Scholar
  25. 25.
    Jurie, F., Schmid, C.: Scale-Invariant Shape Features for Recognition of Object Categories. In: CVPR 2004 (2004)Google Scholar
  26. 26.
    Kumar, M.P., Koller, D.: Efficiently Selecting Regions for Scene Understanding. In: CVPR 2010 (2010)Google Scholar
  27. 27.
    Lampert, C., Blaschko, M., Hofmann, T.: Beyond Sliding Windows: Object Localization by Efficient Subwindow Search. In: CVPR 2008 (2008)Google Scholar
  28. 28.
    Loy, G., Zelinsky, A.: Fast Radial Symmetry for Detecting Points of Interest. PAMI 25(8), 959–973 (2003)CrossRefGoogle Scholar
  29. 29.
    Mahamud, S., Williams, L.R., Thornber, K.K., Xu, K.: Segmentation of Multiple Salient Closed Contours from Real Images. PAMI (2003)Google Scholar
  30. 30.
    Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust Wide-Baseline Stereo from Maximally Stable Extremal Regions. IVC 22(10), 761–767 (2004)CrossRefGoogle Scholar
  31. 31.
    Mayer, H.: Automatic Object Extraction from Aerial Imagery, a Survey Focusing on Buildings. CVIU 74(2), 138–149 (1999)Google Scholar
  32. 32.
    Opelt, A., Pinz, A., Zisserman, A.: A Boundary-Fragment-Model for Object Detection. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3952, pp. 575–588. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  33. 33.
    Parent, P., Zucker, S.W.: Trace Inference, Curvature Consistency, and Curve Detection. PAMI 11(8) (1989)Google Scholar
  34. 34.
    Perona, P., Freeman, W.T.: A Factorization Approach to Grouping. In: Burkhardt, H.-J., Neumann, B. (eds.) ECCV 1998. LNCS, vol. 1406, pp. 655–670. Springer, Heidelberg (1998)Google Scholar
  35. 35.
    Roberts, L.: Machine Perception of Three-Dimensional Solids. Ph.D. thesis (1965)Google Scholar
  36. 36.
    Robles-Kelly, A., Hancock, E.R.: A Probabilistic Spectral Framework for Grouping and Segmentation. PR 37(7), 1387–1405 (2004)Google Scholar
  37. 37.
    Russakovsky, O., Ng, A.Y.: A Steiner Tree Approach to Object Detection. In: CVPR 2010 (2010)Google Scholar
  38. 38.
    Sarkar, S., Boyer, K.L.: Quantitative Measures of Change Based on Feature Organisation: Eigenvalues and Eigenvectors. CVIU 71(1), 110–136 (1998)Google Scholar
  39. 39.
    Shashua, A., Ullman, S.: Structural Saliency: the Detection of Globally Salient Structures Using a Locally Connected Network. In: ICCV 1988 (1988)Google Scholar
  40. 40.
    Shotton, J., Blake, A., Cipolla, R.: Contour-Based Learning for Object Detection. In: ICCV 2005 (2005)Google Scholar
  41. 41.
    Sivic, J., Russell, B., Efros, A., Zisserman, A., Freeman, W.: Discovering Objects and Their Location in Images. In: ICCV 2005 (2005)Google Scholar
  42. 42.
    Sun, X., Christoudias, M., Lepetit, V., Fua, P.: Real-Time Landing Place Assessment in Man-Made Environments. MVA (2013)Google Scholar
  43. 43.
    Uijlings, J.R.R., van de Sande, K.E.A., Gevers, T., Smeulders, A.W.M.: Selective Search for Object Recognition. IJCV 104(2), 154–171 (2013)CrossRefGoogle Scholar
  44. 44.
    Vijayanarasimhan, S., Grauman, K.: Efficient Region Search for Object Detection. In: CVPR 2011 (2011)Google Scholar
  45. 45.
    Wang, S., Kubota, T., Siskind, J.M., Wang, J.: Salient Closed Boundary Extraction with Ratio Contour. PAMI 27(4) (2005)Google Scholar
  46. 46.
    Yeh, T., Lee, J., Darrell, T.: Fast Concurrent Object Localization and Recognition. In: CVPR 2009 (2009)Google Scholar
  47. 47.
    Zhang, Z., Cao, Y., Salvi, D., Oliver, K., Waggoner, J., Wang, S.: Free-Shape Subwindow Search for Object Localization. In: CVPR 2010 (2010)Google Scholar
  48. 48.
    Zhang, Z., Fidler, S., Waggoner, J., Dickinson, S., Siskind, J.M., Wang, S.: Supderedge Grouping for Object Localization by Combining Appearance and Shape Information. In: CVPR 2012 (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.CVLab, EPFLLausanneSwitzerland

Personalised recommendations