Occlusion and Motion Reasoning for Long-Term Tracking

  • Yang Hua
  • Karteek Alahari
  • Cordelia Schmid
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8694)

Abstract

Object tracking is a reoccurring problem in computer vision. Tracking-by-detection approaches, in particular Struck [20], have shown to be competitive in recent evaluations. However, such approaches fail in the presence of long-term occlusions as well as severe viewpoint changes of the object. In this paper we propose a principled way to combine occlusion and motion reasoning with a tracking-by-detection approach. Occlusion and motion reasoning is based on state-of-the-art long-term trajectories which are labeled as object or background tracks with an energy-based formulation. The overlap between labeled tracks and detected regions allows to identify occlusions. The motion changes of the object between consecutive frames can be estimated robustly from the geometric relation between object trajectories. If this geometric change is significant, an additional detector is trained. Experimental results show that our tracker obtains state-of-the-art results and handles occlusion and viewpoints changes better than competing tracking methods.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
  2. 2.
    Avidan, S.: Ensemble tracking. PAMI 29(2), 261–271 (2007)CrossRefGoogle Scholar
  3. 3.
    Babenko, B., Yang, M.H., Belongie, S.: Robust object tracking with online multiple instance learning. PAMI 33(8), 1619–1632 (2011)CrossRefGoogle Scholar
  4. 4.
    Badrinarayanan, V., Pérez, P., Le Clerc, F., Oisel, L.: Probabilistic color and adaptive multi-feature tracking with dynamically switched priority between cues. In: ICCV (2007)Google Scholar
  5. 5.
    Birchfield, S.: Elliptical head tracking using intensity gradients and color histograms. In: CVPR (1998)Google Scholar
  6. 6.
    Boykov, Y., Jolly., M.P.: Interactive graph cuts for optimal boundary & region segmentation of objects in n-d images. In: ICCV (2001)Google Scholar
  7. 7.
    Brox, T., Malik, J.: Object segmentation by long term analysis of point trajectories. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part V. LNCS, vol. 6315, pp. 282–295. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Brox, T., Malik, J.: Large displacement optical flow: Descriptor matching in variational motion estimation. PAMI 33(3), 510–513 (2011)CrossRefGoogle Scholar
  9. 9.
    Rother, C., Kolmogorov, V., Blake, A.: Grabcut: Interactive foreground extraction using iterated graph cuts. ACM Trans. Graphics (2004)Google Scholar
  10. 10.
    Collins, R.T., Liu, Y., Leordeanu, M.: Online selection of discriminative tracking features. PAMI 27(10), 1631–1643 (2005)CrossRefGoogle Scholar
  11. 11.
    Comaniciu, D., Ramesh, V., Meer, P.: Kernel-based object tracking. PAMI 25(5), 564–577 (2003)CrossRefGoogle Scholar
  12. 12.
    Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: CVPR (2005)Google Scholar
  13. 13.
    Du, W., Piater, J.: A probabilistic approach to integrating multiple cues in visual tracking. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part II. LNCS, vol. 5303, pp. 225–238. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  14. 14.
    Everingham, M., Sivic, J., Zisserman, A.: Taking the bite out of automatic naming of characters in TV video. Image and Vision Computing 27(5) (2009)Google Scholar
  15. 15.
    Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The Pascal Visual Object Classes (VOC) Challenge. IJCV 88(2), 303–338 (2010)CrossRefGoogle Scholar
  16. 16.
    Fan, R.E., Chang, K.W., Hsieh, C.J., Wang, X.R., Lin, C.J.: LIBLINEAR: A library for large linear classification. JMLR 9, 1871–1874 (2008)MATHGoogle Scholar
  17. 17.
    Felzenszwalb, P.F., Girshick, R.B., McAllester, D., Ramanan, D.: Object detection with discriminatively trained part based models. PAMI 32(9), 1627–1645 (2010)CrossRefGoogle Scholar
  18. 18.
    Grabner, H., Leistner, C., Bischof, H.: Semi-supervised on-line boosting for robust tracking. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 234–247. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  19. 19.
    Hammer, P.L.: Some network flow problems solved with pseudo-boolean programming. Operations Research 13, 388–399 (1965)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Hare, S., Saffari, A., Torr, P.H.S.: Struck: Structured output tracking with kernels. In: ICCV (2011)Google Scholar
  21. 21.
    Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press (2004)Google Scholar
  22. 22.
    Isard, M., Blake, A.: ICONDENSATION: Unifying low-level and high-level tracking in a stochastic framework. In: Burkhardt, H.-J., Neumann, B. (eds.) ECCV 1998. LNCS, vol. 1406, pp. 893–908. Springer, Heidelberg (1998)Google Scholar
  23. 23.
    Jepson, A.D., Fleet, D.J., Maraghi, T.F.E.: Robust online appearance models for visual tracking. PAMI 25(10), 1296–1311 (2003)CrossRefGoogle Scholar
  24. 24.
    Kalal, Z., Mikolajczyk, K., Matas, J.: Tracking-learning-detection. PAMI 34(7), 1409–1422 (2012)CrossRefGoogle Scholar
  25. 25.
    Kolmogorov, V., Zabih, R.: What energy functions can be minimized via graph cuts? PAMI 26(2), 147–159 (2004)CrossRefGoogle Scholar
  26. 26.
    Lee, K., Ho, J., Yang, M., Kriegman, D.: Visual tracking and recognition using probabilistic appearance manifolds. CVIU 99(3), 303–331 (2005)Google Scholar
  27. 27.
    Leibe, B., Schindler, K., Cornelis, N., van Gool, L.: Coupled object detection and tracking from static cameras and moving vehicles. PAMI 30(10), 1683–1698 (2008)CrossRefGoogle Scholar
  28. 28.
    Lezama, J., Alahari, K., Sivic, J., Laptev, I.: Track to the future: Spatio-temporal video segmentation with long-range motion cues. In: CVPR (2011)Google Scholar
  29. 29.
    Liu, B., Huang, J., Kulikowski, C., Yang, L.: Robust visual tracking using local sparse appearance model and k-selection. PAMI 35(12), 2968–2981 (2013)CrossRefGoogle Scholar
  30. 30.
    Lucas, B., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: IJCAI (1981)Google Scholar
  31. 31.
    Malisiewicz, T., Gupta, A., Efros, A.: Ensemble of exemplar-svms for object detection and beyond. In: ICCV (2011)Google Scholar
  32. 32.
    Matthews, I., Ishikawa, T., Baker, S.: The template update problem. PAMI 26(6), 810–815 (2004)CrossRefGoogle Scholar
  33. 33.
    Mei, X., Ling, H.: Robust visual tracking and vehicle classification via sparse representation. PAMI 33(11), 2259–2272 (2011)CrossRefGoogle Scholar
  34. 34.
    Moreno-Noguer, F., Sanfeliu, A., Samaras, D.: Dependent multiple cue integration for robust tracking. PAMI 30(4), 670–685 (2008)CrossRefGoogle Scholar
  35. 35.
    Ochs, P., Malik, J., Brox, T.: Segmentation of moving objects by long term video analysis. PAMI 36(6), 1187–1200 (2014)CrossRefGoogle Scholar
  36. 36.
    Pang, Y., Ling, H.: Finding the best from the second bests - inhibiting subjective bias in evaluation of visual tracking algorithms. In: ICCV (2013)Google Scholar
  37. 37.
    Park, D.W., Kwon, J., Lee, K.M.: Robust visual tracking using autoregressive hidden Markov model. In: CVPR (2012)Google Scholar
  38. 38.
    Pérez, P., Vermaak, J., Blake, A.: Data fusion for visual tracking with particles. Proc. IEEE 92(3), 495–513 (2004)CrossRefGoogle Scholar
  39. 39.
    Platt, J.C.: Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. In: NIPS (1999)Google Scholar
  40. 40.
    Ramanan, D., Forsyth, D., Zisserman, A.: Tracking people by learning their appearance. PAMI 29(1), 65–81 (2007)CrossRefGoogle Scholar
  41. 41.
    Ross, D.A., Lim, J., Lin, R., Yang, M.: Incremental learning for robust visual tracking. IJCV 77(1), 125–141 (2008)CrossRefGoogle Scholar
  42. 42.
    Song, S., Xiao, J.: Tracking revisited using RGBD camera: Unified benchmark and baselines. In: ICCV (2013)Google Scholar
  43. 43.
    Spengler, M., Schiele, B.: Towards robust multi-cue integration for visual tracking. Machine Vis. App. 14, 50–58 (2003)CrossRefGoogle Scholar
  44. 44.
    Stenger, B., Woodley, T., Cipolla, R.: Learning to track with multiple observers. In: CVPR (2009)Google Scholar
  45. 45.
    Sundaram, N., Brox, T., Keutzer, K.: Dense point trajectories by GPU-accelerated large displacement optical flow. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part I. LNCS, vol. 6311, pp. 438–451. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  46. 46.
    Supancic, J.S., Ramanan, D.: Self-paced learning for long-term tracking. In: CVPR (2013)Google Scholar
  47. 47.
    Wu, B., Nevatia, R.: Detection and tracking of multiple, partially occluded humans by Bayesian combination of edgelet based part detectors. IJCV (2007)Google Scholar
  48. 48.
    Wu, Y., Lim, J., Yang, M.H.: Online object tracking: A benchmark. In: CVPR (2013)Google Scholar
  49. 49.
    Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. ACM Comput. Surv. 38(4) (2006)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Yang Hua
    • 1
  • Karteek Alahari
    • 1
  • Cordelia Schmid
    • 1
  1. 1.InriaFrance

Personalised recommendations