Advertisement

Improved Motion Invariant Deblurring through Motion Estimation

  • Scott McCloskey
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8692)

Abstract

We address the capture of sharp images of fast-moving objects, and build on the Motion Invariant photographic technique. The key advantage of motion invariance is that, unlike other computational photographic techniques, it does not require pre-exposure velocity estimation in order to ensure numerically stable deblurring. Its disadvantage is that the invariance is only approximate - objects moving with non-zero velocity will exhibit artifacts in the deblurred image related to tail clipping in the motion Point Spread Function (PSF). We model these artifacts as a convolution of the desired latent image with an error PSF, and demonstrate that the spatial scale of these artifacts corresponds to the object velocity. Surprisingly, despite the use of parabolic motion to capture an image in which blur is invariant to motion, we demonstrate that the motion invariant image can be used to estimate object motion post-capture. With real camera images, we demonstrate significant reductions in the artifacts by using the estimated motion for deblurring. We also quantify a 96% reduction in reconstruction error, relative to a floor established by exact PSF deconvolution, via simulation with a large test set of photographic images.

Keywords

Root Mean Square Error Motion Estimation Latent Image Motion Blur Blind Deconvolution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agrawal, A., Raskar, R.: Optimal single image capture for motion deblurring. In: Computer Vision and Pattern Recognition, pp. 2560–2567 (2009)Google Scholar
  2. 2.
    Agrawal, A., Xu, Y.: Coded exposure deblurring: Optimized codes for PSF estimation and invertibility. In: Computer Vision and Pattern Recognition (2009)Google Scholar
  3. 3.
    Bando, Y., Holtzman, H., Raskar, R.: Near-invariant blur for depth and 2d motion via time-varying light field analysis. ACM Transactions on Graphics (Proceedings of SIGGRAPH), 13:1–13:15 (2013)Google Scholar
  4. 4.
    Cho, T.S., Levin, A., Durand, F., Freeman, W.T.: Motion blur removal with orthogonal parabolic exposures. In: Int’l Conf. on Computational Photography (2010)Google Scholar
  5. 5.
    Gupta, A., Joshi, N., Lawrence Zitnick, C., Cohen, M., Curless, B.: Single image deblurring using motion density functions. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part I. LNCS, vol. 6311, pp. 171–184. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  6. 6.
    Hays, J., Efros, A.A.: Im2gps: estimating geographic information from a single image. In: Computer Vision and Pattern Recognition (2008)Google Scholar
  7. 7.
    Joshi, N., Szeliski, R., Kriegman, D.: Psf estimation using sharp edge prediction. In: Computer Vision and Pattern Recognition (2008)Google Scholar
  8. 8.
    Köhler, R., Hirsch, M., Mohler, B., Schölkopf, B., Harmeling, S.: Recording and playback of camera shake: benchmarking blind deconvolution with a real-world database. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part VII. LNCS, vol. 7578, pp. 27–40. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  9. 9.
    Krishnan, D., Fergus, R.: Fast image deconvolution using hyper-laplacian priors. In: NIPS (2009)Google Scholar
  10. 10.
    Levin, A.: Blind motion deblurring using image statistics. In: NIPS, pp. 841–848 (2006)Google Scholar
  11. 11.
    Levin, A., Fergus, R., Fergus, R., Durand, F., Freeman, W.T.: Image and depth from a conventional camera with a coded aperture. In: SIGGRAPH (2007)Google Scholar
  12. 12.
    Levin, A., Sand, P., Cho, T.S., Durand, F., Freeman, W.T.: Motion-invariant photography. In: SIGGRAPH (2008)Google Scholar
  13. 13.
    McCloskey, S.: Velocity-dependent shutter sequences for motion deblurring. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part VI. LNCS, vol. 6316, pp. 309–322. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  14. 14.
    McCloskey, S., Ding, Y., Yu, J.: Design and estimation of coded exposure point spread functions. IEEE Trans. Pattern Analysis and Machine Intelligence 34(10), 2071–2077 (2012)CrossRefGoogle Scholar
  15. 15.
    McCloskey, S., Muldoon, K., Venkatesha, S.: Motion invariance and custom blur from lens motion. In: Int’l Conf. on Computational Photography (2011)Google Scholar
  16. 16.
    McCloskey, S., Muldoon, K., Venkatesha, S.: Motion aware motion invariance. In: Int’l Conf. on Computational Photography (2014)Google Scholar
  17. 17.
    Nagahara, H., Kuthirummal, S., Zhou, C.Y., Nayar, S.K.: Flexible Depth of Field Photography. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part IV. LNCS, vol. 5305, pp. 60–73. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  18. 18.
    Raskar, R., Agrawal, A., Tumblin, J.: Coded exposure photography: motion deblurring using fluttered shutter. ACM Trans. on Graphics 25(3), 795–804 (2006)CrossRefGoogle Scholar
  19. 19.
    Sonoda, T., Nagahara, H., Taniguchi, R.-I.: Motion-invariant coding using a programmable aperture camera. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds.) ACCV 2012, Part IV. LNCS, vol. 7727, pp. 379–391. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  20. 20.
    Veeraraghavan, A., Raskar, R., Agrawal, A., Mohan, A., Tumblin, J.: Dappled photography: Mask enhanced cameras for heterodyned light fields and coded aperture refocusing. In: SIGGRAPH (2007)Google Scholar
  21. 21.
    Webster, S., Dorrell, A.: Improved motion invariant imaging with time varying shutter functions. In: Proc. of SPIE-IS&T Electronic Imaging. SPIE, vol. 7876, pp. 787604–787604–8 (2011)Google Scholar
  22. 22.
    Whyte, O., Sivic, J., Zisserman, A., Ponce, J.: Non-uniform deblurring for shaken images. Int’l Journal of Computer Vision 98(2), 168–186 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Xu, L., Jia, J.: Two-phase kernel estimation for robust motion deblurring. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part I. LNCS, vol. 6311, pp. 157–170. Springer, Heidelberg (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Scott McCloskey
    • 1
  1. 1.Honeywell LabsUSA

Personalised recommendations