Advertisement

UPnP: An Optimal O(n) Solution to the Absolute Pose Problem with Universal Applicability

  • Laurent Kneip
  • Hongdong Li
  • Yongduek Seo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8689)

Abstract

A large number of absolute pose algorithms have been presented in the literature. Common performance criteria are computational complexity, geometric optimality, global optimality, structural degeneracies, and the number of solutions. The ability to handle minimal sets of correspondences, resulting solution multiplicity, and generalized cameras are further desirable properties. This paper presents the first PnP solution that unifies all the above desirable properties within a single algorithm. We compare our result to state-of-the-art minimal, non-minimal, central, and non-central PnP algorithms, and demonstrate universal applicability, competitive noise resilience, and superior computational efficiency. Our algorithm is called Unified PnP (UPnP).

Keywords

PnP Non-perspective PnP Generalized absolute pose linear complexity global optimality geometric optimality DLS 

Supplementary material

978-3-319-10590-1_9_MOESM1_ESM.pdf (231 kb)
Electronic Supplementary Material (PDF 232 KB)

References

  1. 1.
    Ask, E., Yubin, K., Astrom, K.: Exploiting p-fold symmetries for faster polynomial equation solving. In: Proceedings of the International Conference on Pattern Recognition (ICPR), Tsukuba, Japan (2012)Google Scholar
  2. 2.
    Cayley, A.: About the algebraic structure of the orthogonal group and the other classical groups in a field of characteristic zero or a prime characteristic. Reine Angewandte Mathematik 32 (1846)Google Scholar
  3. 3.
    Chen, C.S., Chang, W.Y.: On pose recovery for generalized visual sensors. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI) 26(7), 848–861 (2004)CrossRefGoogle Scholar
  4. 4.
    Cox, D.A., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra, 3rd edn. Undergraduate Texts in Mathematics. Springer-Verlag New York, Inc., Secaucus (2007)CrossRefGoogle Scholar
  5. 5.
    Ess, A., Neubeck, A., Van Gool, L.: Generalised linear pose estimation. In: Proceedings of the British Machine Vision Conference (BMVC), pp. 22.1–22.10. Warwick, UK (2007)Google Scholar
  6. 6.
    Hesch, J.A., Roumeliotis, S.I.: A Direct Least-Squares (DLS) Method for PnP. In: Proceedings of the International Conference on Computer Vision (ICCV), Barcelona, Spain (2011)Google Scholar
  7. 7.
    Kneip, L., Furgale, P.: OpenGV: A Unified and Generalized Approach to Real-Time Calibrated Geometric Vision. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Hongkong (2014)Google Scholar
  8. 8.
    Kneip, L., Furgale, P., Siegwart, R.: Using Multi-Camera Systems in Robotics: Efficient Solutions to the NPnP Problem. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Karlsruhe, Germany (2013)Google Scholar
  9. 9.
    Kneip, L., Scaramuzza, D., Siegwart, R.: A novel parametrization of the perspective-three-point problem for a direct computation of absolute camera position and orientation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Colorado Springs, USA (2011)Google Scholar
  10. 10.
    Kukelova, Z., Bujnak, M., Pajdla, T.: Automatic generator of minimal problem solvers. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part III. LNCS, vol. 5304, pp. 302–315. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  11. 11.
    Lepetit, V., Moreno-Noguer, F., Fua, P.: EPnP: An accurate O(n) solution to the PnP problem. International Journal of Computer Vision (IJCV) 81(2), 578–589 (2009)CrossRefGoogle Scholar
  12. 12.
    Li, S., Xu, C., Xie, M.: A robust O(n) solution to the perspective-n-point problem. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI) 34(7), 1444–1450 (2012)CrossRefGoogle Scholar
  13. 13.
    Lu, C., Hager, G., Mjolsness, E.: Fast and globally convergent pose estimation from video images. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI) 22(6), 610–622 (2000)CrossRefGoogle Scholar
  14. 14.
    Nistér, D., Stewénius, H.: A minimal solution to the generalized 3-point pose problem. Journal of Mathematical Imaging and Vision (JMIV) 27(1), 67–79 (2006)CrossRefGoogle Scholar
  15. 15.
    Schweighofer, G., Pinz, A.: Robust pose estimation from a planar target. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI) 28(12), 2024–2030 (2006)CrossRefGoogle Scholar
  16. 16.
    Schweighofer, G., Pinz, A.: Globally optimal O(n) solution to the PnP problem for general camera models. In: Proceedings of the British Machine Vision Conference (BMVC), Leeds, UK (2008)Google Scholar
  17. 17.
    Zheng, Y., Kuang, Y., Sugimoto, S., Astrom, K., Okutomi, M.: Revisiting the PnP problem: A fast, general and optimal solution. In: Proceedings of the International Conference on Computer Vision (ICCV), Sydney, Australia (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Laurent Kneip
    • 1
  • Hongdong Li
    • 1
  • Yongduek Seo
    • 2
  1. 1.Research School of EngineeringAustralian National UniversityAustralia
  2. 2.Department of Media TechnologySogang UniversityKorea

Personalised recommendations