Advertisement

Surface Matching and Registration by Landmark Curve-Driven Canonical Quasiconformal Mapping

  • Wei Zeng
  • Yi-Jun Yang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8689)

Abstract

This work presents a novel surface matching and registration method based on the landmark curve-driven canonical surface quasiconformal mapping, where an open genus zero surface decorated with landmark curves is mapped to a canonical domain with horizontal or vertical straight segments and the local shapes are preserved as much as possible. The key idea of the canonical mapping is to minimize the harmonic energy with the landmark curve straightening constraints and generate a quasi-holomorphic 1-form which is zero in one parameter along landmark and results in a quasiconformal mapping. The mapping exists and is unique and intrinsic to surface and landmark geometry. The novel shape representation provides a conformal invariant shape signature. We use it as Teichmüller coordinates to construct a subspace of the conventional Teichmüller space which considers geometry feature details and therefore increases the discriminative ability for matching. Furthermore, we present a novel and efficient registration method for surfaces with landmark curve constraints by computing an optimal mapping over the canonical domains with straight segments, where the curve constraints become linear forms. Due to the linearity of 1-form and harmonic map, the algorithms are easy to compute, efficient and practical. Experiments on human face and brain surfaces demonstrate the efficiency and efficacy and the potential for broader shape analysis applications.

Keywords

Conformal Mapping Quasiconformal Mapping Conformal Module Registration Method Shape Representation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahlfors, L.: Lectures in Quasiconformal Mappings. Van Nostrand Reinhold, New York (1966)Google Scholar
  2. 2.
    Boris, S., Schröder, P., Pinkall, U.: Conformal equivalence of triangle meshes. ACM TOG 27(3), 1–11 (2008)Google Scholar
  3. 3.
    Desbrun, M., Meyer, M., Alliez, P.: Intrinsic parameterizations of surface meshes. In: Eurographics 2002, pp. 209–218 (2002)Google Scholar
  4. 4.
    Farkas, H.M., Kra, I.: Riemann Surfaces (Graduate Texts in Mathematics). Springer (1991)Google Scholar
  5. 5.
    Floater, M.S., Hormann, K.: Surface parameterization: a tutorial and survey, pp. 157–186. SpringerGoogle Scholar
  6. 6.
    Funkhouser, T., Min, P., Kazhdan, M., Chen, J., Halderman, A., Dobkin, D., Jacobs, D.: A search engine for 3D models. ACM TOG 22(1), 83–105 (2003)CrossRefGoogle Scholar
  7. 7.
    Gu, D.X., Zeng, W., Luo, F., Yau, S.T.: Numerical computation of surface conformal mappings. Computational Methods and Functional Theory 11(2), 747–787 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Jin, M., Zeng, W., Luo, F., Gu, X.: Computing Teichmüller shape space. IEEE TVCG 15(3), 504–517 (2009)Google Scholar
  9. 9.
    Kazhdan, M., Funkhouser, T., Rusinkiewicz, S.: Rotation invariant spherical harmonic representation of 3D shape descriptors. In: SGP 2003, pp. 156–164 (2003)Google Scholar
  10. 10.
    Kurtek, S., Srivastava, A., Klassen, E., Laga, H.: Landmark-guided elastic shape analysis of spherically-parameterized surfaces. Computer Graphics Forum (Proceedings of Eurographics 2013) 32(2), 429–438 (2013)CrossRefGoogle Scholar
  11. 11.
    Levy, B., Petitjean, S., Ray, N., Maillot, J.: Least squares conformal maps for automatic texture atlas generation. In: SIGGRAPH 2002 (2002)Google Scholar
  12. 12.
    Lui, L.M., Wong, T.W., Zeng, W., Gu, X., Thompson, P.M., Chan, T.F., Yau, S.T.: Optimization of surface registrations using Beltrami holomorphic flow. J. of Scie. Comp. 50(3), 557–585 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Lui, L.M., Zeng, W., Yau, S.T., Gu, X.: Shape analysis of planar multiply-connected objects using conformal welding. IEEE TPAMI 36(7), 1384–1401 (2014)CrossRefGoogle Scholar
  14. 14.
    Lui, L., Wang, Y., Chan, T., Thompson, P.: Automatic landmark tracking and its application to the optimization of brain conformal mapping, pp. II:1784–II:1792 (2006)Google Scholar
  15. 15.
    Schoen, R., Yau, S.T.: Lecture on Harmonic Maps, vol. 2. International Press Incorporated, Boston (1997)Google Scholar
  16. 16.
    Sharon, E., Mumford, D.: 2D-shape analysis using conformal mapping. IJCV 70, 55–75 (2006)CrossRefGoogle Scholar
  17. 17.
    Sheffer, A., Praun, E., Rose, K.: Mesh parameterization methods and their applications, vol. 2 (2006)Google Scholar
  18. 18.
    Shi, R., Zeng, W., Su, Z., Damasio, H., Lu, Z., Wang, Y., Yau, S.T., Gu, X.: Hyperbolic harmonic mapping for constrained brain surface registration. In: IEEE CVPR 2013 (2013)Google Scholar
  19. 19.
    Weber, O., Myles, A., Zorin, D.: Computing extremal quasiconformal maps. Comp. Graph. Forum 31(5), 1679–1689 (2012)CrossRefGoogle Scholar
  20. 20.
    Yin, L., Wei, X., Sun, Y., Wang, J., Rosato, M.J.: A 3D facial expression database for facial behavior research. In: IEEE FG 2006, pp. 211–216 (2006)Google Scholar
  21. 21.
    Zeng, W., Zeng, Y., Wang, Y., Yin, X., Gu, X., Samaras, D.: 3D non-rigid surface matching and registration based on holomorphic differentials. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part III. LNCS, vol. 5304, pp. 1–14. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  22. 22.
    Zeng, W., Gu, X.: Registration for 3D surfaces with large deformations using quasi-conformal curvature flow. In: IEEE CVPR 2011 (2011)Google Scholar
  23. 23.
    Zeng, W., Samaras, D., Gu, X.D.: Ricci flow for 3D shape analysis. IEEE TPAMI 32(4), 662–677 (2010)CrossRefGoogle Scholar
  24. 24.
    Zeng, W., Shi, R., Wang, Y., Yau, S.T., Gu, X.: Teichmüller shape descriptor and its application to Alzheimer’s disease study. IJCV 105(2), 155–170 (2013)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Wei Zeng
    • 1
  • Yi-Jun Yang
    • 2
  1. 1.Florida International UniversityUSA
  2. 2.Shandong UniversityChina

Personalised recommendations