Advertisement

Coplanar Common Points in Non-centric Cameras

  • Wei Yang
  • Yu Ji
  • Jinwei Ye
  • S. Susan Young
  • Jingyi Yu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8689)

Abstract

Discovering and extracting new image features pertaining to scene geometry is important to 3D reconstruction and scene understanding. Examples include the classical vanishing points observed in a centric camera and the recent coplanar common points (CCPs) in a crossed-slit camera [21,17]. A CCP is a point in the image plane corresponding to the intersection of the projections of all lines lying on a common 3D plane. In this paper, we address the problem of determining CCP existence in general non-centric cameras. We first conduct a ray-space analysis to show that finding the CCP of a 3D plane is equivalent to solving an array of ray constraint equations. We then derive the necessary and sufficient conditions for CCP to exist in an arbitrary non-centric camera such as non-centric catadioptric mirrors. Finally, we present robust algorithms for extracting the CCPs from a single image and validate our theories and algorithms through experiments.

Keywords

Mirror Surface Symmetric Axis Vertical Slit Cylindrical Mirror Catadioptric Camera 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Supplementary material

978-3-319-10590-1_15_MOESM1_ESM.pdf (515 kb)
Electronic Supplementary Material (PDF 516 KB)

References

  1. 1.
    Baker, S., Nayar, S.K.: A theory of single-viewpoint catadioptric image formation. IJCV 35(2) (1999)Google Scholar
  2. 2.
    Caglioti, V., Gasparini, S.: “How many planar viewing surfaces are there in noncentral catadioptric cameras?” towards singe-image localization of space lines. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 1266–1273 (June 2006)Google Scholar
  3. 3.
    Delage, E., Lee, H., Ng, A.Y.: Automatic single-image 3D reconstructions of indoor manhattan world scenes. In: ISRR (2005)Google Scholar
  4. 4.
    Gupta, R., Hartley, R.I.: Linear pushbroom cameras. IEEE TPAMI, 963–975 (1997)Google Scholar
  5. 5.
    Hoiem, D., Efros, A.A., Hebert, M.: Geometric context from a single image. In: ICCV (2005)Google Scholar
  6. 6.
    Hoiem, D., Efros, A.A., Hebert, M.: Automatic photo pop-up. In: ACM SIGGRAPH (2005)Google Scholar
  7. 7.
    Levoy, M., Hanrahan, P.: Light field rendering. In: ACM SIGGRAPH, pp. 31–42 (1996)Google Scholar
  8. 8.
    Meingast, M., Geyer, C., Sastry, S.: Geometric models of rolling-shutter cameras. CoRR (2005)Google Scholar
  9. 9.
    Pajdla, T.: Stereo with oblique cameras. In: IEEE Workshop on Stereo and Multi-Baseline Vision, pp. 85–91 (2001)Google Scholar
  10. 10.
    Pajdla, T.: Geometry of two-slit camera. Rapport Technique CTU-CMP-2002-02, Center for Machine Perception, Czech Technical University, Prague (2002)Google Scholar
  11. 11.
    Ponce, J.: What is a camera? In: The IEEE Conference on Computer Vision and Pattern Recognition (2009)Google Scholar
  12. 12.
    Shum, H.Y., He, L.W.: Rendering with concentric mosaics. In: Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques, pp. 299–306. ACM Press/Addison-Wesley Publishing Co. (1999)Google Scholar
  13. 13.
    Sturm, P., Ramalingam, S., Tardif, J.P., Gasparini, S., Barreto, J.: Camera models and fundamental concepts used in geometric computer vision. Foundations and Trends in Computer Graphics and Vision 6(1-2), 1–183 (2011)CrossRefGoogle Scholar
  14. 14.
    Swaminathan, R., Grossberg, M., Nayar, S.: Caustics of Catadioptric Cameras. In: IEEE International Conference on Computer Vision (ICCV), vol. 2, pp. 2–9 (July 2001)Google Scholar
  15. 15.
    Swaminathan, R., Grossberg, M.D., Nayar, S.K.: Non-single viewpoint catadioptric cameras: Geometry and analysis. Int. J. Comput. Vision 66(3), 211–229 (2006)CrossRefGoogle Scholar
  16. 16.
    Tom, H.B.: Rendering novel views from a set of omnidirectional mosaic images. In: Proceedings of Omnivis 2003: Workshop on Omnidirectional Vision and Camera Networks. IEEE Press (2003)Google Scholar
  17. 17.
    Ye, J., Ji, Y., Yu, J.: Manhattan scene understanding via xslit imaging. In: CVPR (June 2013)Google Scholar
  18. 18.
    Yu, J., McMillan, L.: Modelling reflections via multiperspective imaging. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, vol. 1, pp. 117–124 (June 2005)Google Scholar
  19. 19.
    Yu, J., McMillan, L.: General linear cameras. In: Pajdla, T., Matas, J. (eds.) ECCV 2004. LNCS, vol. 3022, pp. 14–27. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  20. 20.
    Yu, J., McMillan, L., Sturm, P.: Multiperspective modeling, rendering, and imaging. In: ACM SIGGRAPH ASIA 2008 Courses, pp. 14:1–14:36 (2008)Google Scholar
  21. 21.
    Zomet, A., Feldman, D., Peleg, S., Weinshall, D.: Mosaicing new views: the crossed-slits projection. IEEE TPAMI 25(6), 741–754 (2003)CrossRefGoogle Scholar
  22. 22.
    Zomet, A., Feldman, D., Peleg, S., Weinshall, D.: Non-perspective imaging and rendering with the crossed-slits projection. Tech. rep., Leibnitz Center, Hebrew University of Jerusalem (2002)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Wei Yang
    • 1
  • Yu Ji
    • 1
  • Jinwei Ye
    • 2
  • S. Susan Young
    • 2
  • Jingyi Yu
    • 1
  1. 1.University of DelawareNewarkUSA
  2. 2.US Army Research LaboratoryAdelphiUSA

Personalised recommendations