Advertisement

Ontology Based Data Access on Temporal and Streaming Data

  • Özgür Lütfü Özçep
  • Ralf Möller
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8714)

Abstract

Though processing time-dependent data has been investigated for a long time, the research on temporal and especially stream reasoning over linked open data and ontologies is reaching its high point these days. In this tutorial, we give an overview of state-of-the art query languages and engines for temporal and stream reasoning. On a more detailed level, we discuss the new language STARQL (Reasoning-based Query Language for Streaming and Temporal ontology Access). STARQL is designed as an expressive and flexible stream query framework that offers the possibility to embed different (temporal) description logics as filter query languages over ontologies, and hence it can be used within the OBDA paradigm (Ontology Based Data Access in the classical sense) and within the ABDEO paradigm (Accessing Big Data over Expressive Ontologies).

Keywords

Ontology Based Data Access streams temporal logics rewriting unfolding semantic web 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley (1995)Google Scholar
  2. 2.
    Allen, J.F.: Towards a General Theory of Action and Time. Artificial Intelligence 23(2), 123–154 (1984)CrossRefzbMATHGoogle Scholar
  3. 3.
    Anicic, D., Fodor, P., Rudolph, S., Stojanovic, N.: Ep-sparql: a unified language for event processing and stream reasoning. In: Srinivasan, S., Ramamritham, K., Kumar, A., Ravindra, M.P., Bertino, E., Kumar, R. (eds.) WWW, pp. 635–644. ACM (2011)Google Scholar
  4. 4.
    Anicic, D., Rudolph, S., Fodor, P., Stojanovic, N.: Stream reasoning and complex event processing in etalis. Semantic Web 3(4), 397–407 (2012)Google Scholar
  5. 5.
    Arasu, A., Babu, S., Widom, J.: The CQL continuous query language: semantic foundations and query execution. The VLDB Journal 15, 121–142 (2006)CrossRefGoogle Scholar
  6. 6.
    Artale, A., Calvanese, D., Kontchakov, R., Zakharyaschev, M.: The DL-Lite family and relations. J. Artif. Intell. Res (JAIR) 36, 1–69 (2009)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Artale, A., Franconi, E.: A survey of temporal extensions of description logics. Annals of Mathematics and Artificial Intelligence 30(1-4), 171–210 (2001)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Artale, A., Kontchakov, R., Wolter, F., Zakharyaschev, M.: Temporal description logic for ontology-based data access. In: Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence, IJCAI 2013, pp. 711–717. AAAI Press (2013)Google Scholar
  9. 9.
    Artikis, A., Skarlatidis, A., Portet, F., Paliouras, G.: Logic-based event recognition. Knowledge Eng. Review 27(4), 469–506 (2012)CrossRefGoogle Scholar
  10. 10.
    Baader, F., Borgwardt, S., Lippmann, M.: Temporalizing ontology-based data access. In: Bonacina, M.P. (ed.) CADE 2013. LNCS (LNAI), vol. 7898, pp. 330–344. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  11. 11.
    Baader, F., Nutt, W.: Basic description logics. In: Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P. (eds.) The Description Logic Handbook, pp. 43–95. Cambridge University Press (2003)Google Scholar
  12. 12.
    van Benthem, J.: The Logic of Time: A Model-Theoretic Investigation into the Varieties of Temporal Ontology and Temporal Discourse, 2nd edn. Reidel (1991)Google Scholar
  13. 13.
    Bohlken, W., Neumann, B., Hotz, L., Koopmann, P.: Ontology-based realtime activity monitoring using beam search. In: Crowley, J.L., Draper, B.A., Thonnat, M. (eds.) ICVS 2011. LNCS, vol. 6962, pp. 112–121. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  14. 14.
    Borgwardt, S., Lippmann, M., Thost, V.: Temporal query answering in dl-lite. In: Eiter, et al. (eds.) [34], pp. 80–92Google Scholar
  15. 15.
    Borgwardt, S., Lippmann, M., Thost, V.: Temporal query answering in the description logic dl-lite. In: Fontaine, P., Ringeissen, C., Schmidt, R.A. (eds.) FroCoS 2013. LNCS (LNAI), vol. 8152, pp. 165–180. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  16. 16.
    Brenninkmeijer, C.Y.A., Galpin, I., Fernandes, A.A.A., Paton, N.W.: A semantics for a query language over sensors, streams and relations. In: Gray, A., Jeffery, K., Shao, J. (eds.) BNCOD 2008. LNCS, vol. 5071, pp. 87–99. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  17. 17.
    Calbimonte, J.-P., Corcho, O., Gray, A.J.G.: Enabling ontology-based access to streaming data sources. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010, Part I. LNCS, vol. 6496, pp. 96–111. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  18. 18.
    Calbimonte, J.P., Jeung, H., Corcho, O., Aberer, K.: Enabling query technologies for the semantic sensor web. Int. J. Semant. Web Inf. Syst. 8(1), 43–63 (2012)CrossRefGoogle Scholar
  19. 19.
    Calì, A., Gottlob, G., Lukasiewicz, T.: Datalog+/-: A unified approach to ontologies and integrity constraints. In: Proceedings of the 12th International Conference on Database Theory, pp. 14–30. ACM Press (2009)Google Scholar
  20. 20.
    Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Poggi, A., Rodriguez-Muro, M., Rosati, R.: Ontologies and databases: The DL-Lite approach. In: Tessaris, S., Franconi, E., Eiter, T., Gutierrez, C., Handschuh, S., Rousset, M.-C., Schmidt, R.A. (eds.) Reasoning Web. LNCS, vol. 5689, pp. 255–356. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  21. 21.
    Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Epistemic first-order queries over description logic knowledge bases. In: Proc. of the 19th Int. Workshop on Description Logics (DL 2006). CEUR Electronic Workshop Proceedings, vol. 189, pp. 51–61 (2006), http://ceur-ws.org/
  22. 22.
    Calvanese, D., et al.: Optique: Obda solution for big data. In: Cimiano, P., Fernández, M., Lopez, V., Schlobach, S., Völker, J. (eds.) ESWC 2013. LNCS, vol. 7955, pp. 293–295. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  23. 23.
    Cammert, M., Heinz, C., Kramer, J., Seeger, B., Vaupel, S., Wolske, U.: Flexible multi-threaded scheduling for continuous queries over data streams. In: 2007 IEEE 23rd International Conference on Data Engineering Workshop, pp. 624–633 (April 2007)Google Scholar
  24. 24.
    Cammert, M., Heinz, C., Krämer, J., Seeger, B.: Sortierbasierte joins über datenströmen. In: Vossen, G., Leymann, F., Lockemann, P.C., Stucky, W. (eds.) BTW. LNI, vol. 65, pp. 365–384. GI (2005)Google Scholar
  25. 25.
    Cammert, M., Krämer, J., Seeger, B., Vaupel, S.: An approach to adaptive memory management in data stream systems. In: Liu, L., Reuter, A., Whang, K.Y., Zhang, J. (eds.) ICDE, p. 137. IEEE Computer Society (2006)Google Scholar
  26. 26.
    Chandrasekaran, S., Cooper, O., Deshpande, A., Franklin, M.J., Hellerstein, J.M., Hong, W., Krishnamurthy, S., Madden, S., Raman, V., Reiss, F., Shah, M.A.: Telegraphcq: Continuous dataflow processing for an uncertain world. In: CIDR (2003)Google Scholar
  27. 27.
    Compton, M., Barnaghi, P., Bermudez, L., GarcÃa-Castro, R., Corcho, O., Cox, S., Graybeal, J., Hauswirth, M., Henson, C., Herzog, A., Huang, V., Janowicz, K., Kelsey, W.D., Phuoc, D.L., Lefort, L., Leggieri, M., Neuhaus, H., Nikolov, A., Page, K., Passant, A., Sheth, A., Taylor, K.: The {SSN} ontology of the {W3C} semantic sensor network incubator group. Web Semantics: Science, Services and Agents on the World Wide Web 17, 25–32 (2012)CrossRefGoogle Scholar
  28. 28.
    Console, M., Horrocks, I., Jimenez-Ruiz, E., Kharloamov, E., Lenzerini, M., Rosati, R., Ruzzi, M., Santarelli, V., Savo, D.F., Soylu, A., Thorstensen, E., Zheleznyakov, D.: Deliverable D4.1 – WP4 Year 1 progress report (ontology and mapping management). Deliverable FP7-318338, EU (October 2013)Google Scholar
  29. 29.
    Cormode, G.: The continuous distributed monitoring model. SIGMOD Record 42(1), 5–14 (2013)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Cugola, G., Margara, A.: Tesla: A formally defined event specification language. In: Proceedings of the Fourth ACM International Conference on Distributed Event-Based Systems, DEBS 2010, pp. 50–61. ACM, New York (2010)Google Scholar
  31. 31.
    Cugola, G., Margara, A.: Complex event processing with t-rex. Journal of Systems and Software 85(8), 1709–1728 (2012)CrossRefGoogle Scholar
  32. 32.
    Cugola, G., Margara, A.: Processing flows of information: From data stream to complex event processing. ACM Comput. Surv. 44(3), 15 (2012)CrossRefGoogle Scholar
  33. 33.
    Della Valle, E., Ceri, S., Barbieri, D., Braga, D., Campi, A.: A first step towards stream reasoning. In: Domingue, J., Fensel, D., Traverso, P. (eds.) FIS 2008. LNCS, vol. 5468, pp. 72–81. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  34. 34.
    Eiter, T., Glimm, B., Kazakov, Y., Krötzsch, M. (eds.): Informal Proceedings of the 26th International Workshop on Description Logics, Ulm, Germany, July 23-26. CEUR Workshop Proceedings, vol. 1014. CEUR-WS.org (2013)Google Scholar
  35. 35.
    Galpin, I., Brenninkmeijer, C., Gray, A., Jabeen, F., Fernandes, A., Paton, N.: Snee: a query processor for wireless sensor networks. Distributed and Parallel Databases 29, 31–85 (2011), doi:10.1007/s10619-010-7074-3CrossRefGoogle Scholar
  36. 36.
    Galpin, I., Brenninkmeijer, C.Y., Jabeen, F., Fernandes, A.A., Paton, N.W.: Comprehensive optimization of declarative sensor network queries. In: Winslett, M. (ed.) SSDBM 2009. LNCS, vol. 5566, pp. 339–360. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  37. 37.
    Galpin, I., Brenninkmeijer, C.Y.A., Jabeen, F., Fernandes, A.A.A., Paton, N.W.: An architecture for query optimization in sensor networks. In: Alonso, G., Blakeley, J.A., Chen, A.L.P. (eds.) ICDE, pp. 1439–1441. IEEE (2008)Google Scholar
  38. 38.
    Galton, A.: Reified temporal theories and how to unreify them. In: Proceedings of the 12th International Joint Conference on Artificial Intelligence, IJCAI 1991, vol. 2, pp. 1177–1182. Morgan Kaufmann Publishers Inc., San Francisco (1991)Google Scholar
  39. 39.
    Gutierrez, C., Hurtado, C.A., Vaisman, A.A.: Temporal rdf. In: Gómez-Pérez, A., Euzenat, J. (eds.) ESWC 2005. LNCS, vol. 3532, pp. 93–107. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  40. 40.
    Heintz, F., Kvarnström, J., Doherty, P.: Stream-based reasoning support for autonomous systems. In: Coelho, H., Studer, R., Wooldridge, M. (eds.) ECAI. Frontiers in Artificial Intelligence and Applications, vol. 215, pp. 183–188. IOS Press (2010)Google Scholar
  41. 41.
    Heintz, F., Rudol, P., Doherty, P.: From images to traffic behavior - a uav tracking and monitoring application. In: FUSION, pp. 1–8. IEEE (2007)Google Scholar
  42. 42.
    Hobbs, J.R., Pan, F.: An ontology of time for the semantic web. ACM Transactions on Asian Language Information Processing 3(1), 66–85 (2004)CrossRefGoogle Scholar
  43. 43.
    Hodkinson, I., Reynolds, M.: Temporal logic. In: Blackburn, P., van Benthem, J., Wolter, F. (eds.) Handbook of Modal Logic, ch. 11, vol. 6, pp. 655–720. Elsevier Science (2006)Google Scholar
  44. 44.
    Horrocks, I., Sattler, U.: A description logic with transitive and inverse roles and role hierarchies. Journal of Logic and Computation 9(3), 385–410 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Hwang, J.H., Xing, Y., Çetintemel, U., Zdonik, S.B.: A cooperative, self-configuring high-availability solution for stream processing. In: ICDE, pp. 176–185 (2007)Google Scholar
  46. 46.
    Jain, N., Mishra, S., Srinivasan, A., Gehrke, J., Widom, J., Balakrishnan, H., Çetintemel, U., Cherniack, M., Tibbetts, R., Zdonik, S.: Towards a streaming sql standard. In: Proc. VLDB Endow., vol. 1(2), pp. 1379–1390 (2008)Google Scholar
  47. 47.
    Kllapi, H., Bilidas, D., Ioannidis, Y., Koubarakis, M.: Deliverable D7.1: Techniques for distributed query planning and execution: One-time queries. Deliverable, Optique (2013)Google Scholar
  48. 48.
    Kontchakov, R., Lutz, C., Toman, D., Wolter, F., Zakharyaschev, M.: The combined approach to ontology-based data access. In: Walsh, T. (ed.) IJCAI, pp. 2656–2661. IJCAI/AAAI (2011)Google Scholar
  49. 49.
    Kostylev, E.V., Reutter, J.: Answering counting aggregate queries over ontologies of the DL-Lite family. In: Proceedings of the 27th AAAI Conference on Artificial Intelligence (AAAI 2013), Bellevue, Washington (2013)Google Scholar
  50. 50.
    Kowalski, R.A., Sadri, F.: Towards a logic-based unifying framework for computing. CoRR abs/1301.6905 (2013)Google Scholar
  51. 51.
    Kowalski, R.A., Toni, F., Wetzel, G.: Towards a declarative and efficient glass-box CLP language. In: WLP, pp. 138–141 (1994)Google Scholar
  52. 52.
    Krämer, J., Seeger, B.: A temporal foundation for continuous queries over data streams. In: Haritsa, J.R., Vijayaraman, T.M. (eds.) COMAD, pp. 70–82. Computer Society of India (2005)Google Scholar
  53. 53.
    Krämer, J., Seeger, B.: Semantics and implementation of continuous sliding window queries over data streams. ACM Trans. Database Syst. 34(1), 1–49 (2009)CrossRefGoogle Scholar
  54. 54.
    Kyzirakos, K., Karpathiotakis, M., Koubarakis, M.: Strabon: A Semantic Geospatial DBMS. In: International Semantic Web Conference, Boston, USA (November 2012)Google Scholar
  55. 55.
    Le-Phuoc, D., Dao-Tran, M., Pham, M.-D., Boncz, P., Eiter, T., Fink, M.: Linked stream data processing engines: Facts and figures. In: Cudré-Mauroux, P., et al. (eds.) ISWC 2012, Part II. LNCS, vol. 7650, pp. 300–312. Springer, Heidelberg (2012), http://dx.doi.org/10.1007/978-3-642-35173-0_20CrossRefGoogle Scholar
  56. 56.
    Lecue, F., Pan, J.Z.: Predictive learning in sensor networks. Submitted to IJCAIGoogle Scholar
  57. 57.
    Milea, V., Frasincar, F., Kaymak, U.: tOWL: A Temporal Web Ontology Language. IEEE Transactions on Systems, Man and Cybernetics 42(1), 268–281 (2012)CrossRefGoogle Scholar
  58. 58.
    Möller, R., Neuenstadt, C., Özçep, Ö.L., Wandelt, S.: Advances in accessing big data with expressive ontologies. In: Timm, I.J., Thimm, M. (eds.) KI 2013. LNCS (LNAI), vol. 8077, pp. 118–129. Springer, Heidelberg (2013), http://dx.doi.org/10.1007/978-3-642-40942-4_11CrossRefGoogle Scholar
  59. 59.
    Montanari, A., Policriti, A.: Decidability results for metric and layered temporal logics. Notre Dame Journal of Formal Logic 37, 37–260 (1996)MathSciNetzbMATHGoogle Scholar
  60. 60.
    Motik, B.: Representing and querying validity time in RDF and OWL: a logic-based approach. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010, Part I. LNCS, vol. 6496, pp. 550–565. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  61. 61.
    Neumann, B., Novak, H.J.: Event models for recognition and natural language description of events in real-world image sequences. In: Bundy, A. (ed.) IJCAI, pp. 724–726. William Kaufmann (1983)Google Scholar
  62. 62.
    Neumann, B., Novak, H.J.: Noas: Ein system zur natürlichsprachlichen beschreibung zeitveränderlicher szenen. Inform., Forsch. Entwickl. 1(2), 83–92 (1986)Google Scholar
  63. 63.
    Noy, N.F.: Semantic integration: a survey of ontology-based approaches. SIGMOD Record 33(4), 65–70 (2004)CrossRefGoogle Scholar
  64. 64.
    Özçep, O.L., Möller, R., Neuenstadt, C.: Obda stream access combined with safe first-order temporal reasoning. Technical report, Hamburg University of Technology (2014)Google Scholar
  65. 65.
    Özçep, O.L., Möller, R., Neuenstadt, C.: A stream-temporal query language for ontology based data access. To be published in Proceedings of the 7th International Workshop on Description Logics (2014)Google Scholar
  66. 66.
    Özçep, Ö.L., Möller, R., Neuenstadt, C., Zheleznyakov, D., Kharlamov, E.: Deliverable D5.1 – a semantics for temporal and stream-based query answering in an OBDA context. Deliverable FP7-318338, EU (October 2013)Google Scholar
  67. 67.
    Papadakis, N., Stravoskoufos, K., Baratis, E., Petrakis, E.G.M., Plexousakis, D.: Proton: A prolog reasoner for temporal ontologies in owl. Expert Syst. Appl. 38(12), 14660–14667 (2011)CrossRefGoogle Scholar
  68. 68.
    Perry, M.: A Framework to Support Spatial, Temporal and Thematic Analytics over Semantic Web Data. Ph.D. thesis, Wright State UNiversity (2008)Google Scholar
  69. 69.
    Le-Phuoc, D., Dao-Tran, M., Xavier Parreira, J., Hauswirth, M.: A native and adaptive approach for unified processing of linked streams and linked data. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC 2011, Part I. LNCS, vol. 7031, pp. 370–388. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  70. 70.
    Phuoc, D.L., Nguyen-Mau, H.Q., Parreira, J.X., Hauswirth, M.: A middleware framework for scalable management of linked streams. J. Web Sem. 16, 42–51 (2012)CrossRefGoogle Scholar
  71. 71.
    Poggi, A., Lembo, D., Calvanese, D., Giacomo, G.D., Lenzerini, M., Rosati, R.: Linking data to ontologies. Journal of Data Semantics 10, 133–173 (2008)zbMATHGoogle Scholar
  72. 72.
    Rist, T., Herzog, G., André, E.: Ereignismodellierung zur inkrementellen high-level bildfolgenanalyse. In: Buchberger, E., Retti, J. (eds.) ÖGAI. Informatik-Fachberichte, vol. 151, pp. 1–11. Springer (1987)Google Scholar
  73. 73.
    Rodriguez-Muro, M., Calvanese, D.: High performance query answering over dl-lite ontologies. In: Brewka, G., Eiter, T., McIlraith, S.A. (eds.) KR. AAAI Press (2012)Google Scholar
  74. 74.
    Rodriguez-Muro, M., Calvanese, D.: Quest, an owl 2 ql reasoner for ontology-based data access. In: Klinov, P., Horridge, M. (eds.) OWLED. CEUR Workshop Proceedings, vol. 849. CEUR-WS.org (2012)Google Scholar
  75. 75.
    Rodriguez-Muro, M., Kontchakov, R., Zakharyaschev, M.: Query rewriting and optimisation with database dependencies in ontop. In: Eiter, et al. (eds.) [34], pp. 917–929Google Scholar
  76. 76.
    Søberg, J., Goebel, V., Plagemann, T.: Deviation detection in automated home care using commonsens. In: PerCom Workshops, pp. 668–673. IEEE (2011)Google Scholar
  77. 77.
    Tappolet, J., Bernstein, A.: Applied temporal rdf: Efficient temporal querying of rdf data with sparql. In: Aroyo, L., Traverso, P., Ciravegna, F., Cimiano, P., Heath, T., Hyvönen, E., Mizoguchi, R., Oren, E., Sabou, M., Simperl, E. (eds.) ESWC 2009. LNCS, vol. 5554, pp. 308–322. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  78. 78.
    Valle, E.D., Schlobach, S., Krötzsch, M., Bozzon, A., Ceri, S., Horrocks, I.: Order matters! harnessing a world of orderings for reasoning over massive data. Semantic Web 4(2), 219–231 (2013)Google Scholar
  79. 79.
    Wandelt, S., Möller, R.: Towards abox modularization of semi-expressive description logics. Applied Ontology 7(2), 133–167 (2012)Google Scholar
  80. 80.
    Wessel, M., Möller, R.: A high performance semantic web query answering engine. In: Horrocks, I., Sattler, U., Wolter, F. (eds.) Description Logics. CEUR Workshop Proceedings, vol. 147. CEUR-WS.org (2005)Google Scholar
  81. 81.
    Zhang, Y., Duc, P.M., Corcho, O., Calbimonte, J.-P.: Srbench: A Streaming RDF/SPARQL Benchmark. In: Cudré-Mauroux, P., et al. (eds.) ISWC 2012, Part I. LNCS, vol. 7649, pp. 641–657. Springer, Heidelberg (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Özgür Lütfü Özçep
    • 1
  • Ralf Möller
    • 1
  1. 1.Institute for Softwaresystems (STS)Hamburg University of TechnologyHamburgGermany

Personalised recommendations