Sparse Spatio-spectral Representation for Hyperspectral Image Super-resolution

  • Naveed Akhtar
  • Faisal Shafait
  • Ajmal Mian
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8695)


Existing hyperspectral imaging systems produce low spatial resolution images due to hardware constraints. We propose a sparse representation based approach for hyperspectral image super-resolution. The proposed approach first extracts distinct reflectance spectra of the scene from the available hyperspectral image. Then, the signal sparsity, non-negativity and the spatial structure in the scene are exploited to explain a high-spatial but low-spectral resolution image of the same scene in terms of the extracted spectra. This is done by learning a sparse code with an algorithm G-SOMP+. Finally, the learned sparse code is used with the extracted scene spectra to estimate the super-resolution hyperspectral image. Comparison of the proposed approach with the state-of-the-art methods on both ground-based and remotely-sensed public hyperspectral image databases shows that the presented method achieves the lowest error rate on all test images in the three datasets.


Hyperspectral super-resolution spatio-spectral sparse representation 

Supplementary material (30.1 mb)
Electronic Supplementary Material (ZIP 30,829 KB) (0 kb)
Electronic Supplementary Material (ZIP 7 KB)


  1. 1.
    Aharon, M., Elad, M., Bruckstein, A.: K-svd: An algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. Signal Process. 54(11), 4311–4322 (2006)CrossRefGoogle Scholar
  2. 2.
    Aiazzi, B., Baronti, S., Selva, M.: Improving component substitution pansharpening through multivariate regression of MS +Pan data. IEEE Trans. Geosci. Remote Sens. 45(10), 3230–3239 (2007)CrossRefGoogle Scholar
  3. 3.
    Akhtar, N., Shafait, F., Mian, A.: Repeated constrained sparse coding with partial dictionaries for hyperspectral unmixing. In: IEEE Winter Conference on Applications of Computer Vision, pp. 953–960 (2014)Google Scholar
  4. 4.
    Akhtar, N., Shafait, F., Mian, A.: SUnGP: A greedy sparse approximation algorithm for hyperspectral unmixing. In: Int. Conf. on Pattern Recognition (2014)Google Scholar
  5. 5.
    Alparone, L., Wald, L., Chanussot, J., Thomas, C., Gamba, P., Bruce, L.: Comparison of pansharpening algorithms: Outcome of the 2006 GRS-S data-fusion contest. IEEE Trans. Geosci. Remote Sens. 45(10), 3012–3021 (2007)CrossRefGoogle Scholar
  6. 6.
    Bioucas-Dias, J., Plaza, A., Camps-Valls, G., Scheunders, P., Nasrabadi, N., Chanussot, J.: Hyperspectral remote sensing data analysis and future challenges. IEEE Geosci. Remote Sens. Mag. 1, 6–36 (2013)CrossRefGoogle Scholar
  7. 7.
    Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1–122 (2011)CrossRefGoogle Scholar
  8. 8.
    Bruckstein, A., Elad, M., Zibulevsky, M.: On the uniqueness of nonnegative sparse solutions to underdetermined systems of equations. IEEE Trans. Inf. Theory 54(11), 4813–4820 (2008)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Carper, W.J., Lilles, T.M., Kiefer, R.W.: The use of intensity-hue-saturation transformations for merging SOPT panchromatic and multispectrl image data. Photogram. Eng. Remote Sens. 56(4), 459–467 (1990)Google Scholar
  10. 10.
    Cetin, M., Musaoglu, N.: Merging hyperspectral and panchromatic image data: Qualitative and quantitative analysis. Int. J. Remote Sens. 30(7), 1779–1804 (2009)CrossRefGoogle Scholar
  11. 11.
    Chakrabarti, A., Zickler, T.: Statistics of real-world hyperspectral images. In: IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pp. 193–200 (2011)Google Scholar
  12. 12.
    Green, R.O., Eastwood, M.L., Sarture, C.M., Chrien, T.G., Aronsson, M., Chippendale, B.J., Faust, J.A., Pavri, B.E., Chovit, C.J., Solis, M., Olah, M.R., Williams, O.: Imaging spectroscopy and the airborne visible/infrared imaging spectrometer (AVIRIS). Remote Sensing of Environment 65(3), 227–248 (1998)CrossRefGoogle Scholar
  13. 13.
    Huang, B., Song, H., Cui, H., Peng, J., Xu, Z.: Spatial and spectral image fusion using sparse matrix factorization. IEEE Trans. Geosci. Remote Sens. 52(3), 1693–1704 (2014)CrossRefGoogle Scholar
  14. 14.
    Imai, F.H., Berns, R.S.: High resolution multispectral image archives: a hybrid approach. In: Color Imaging Conference, pp. 224–227 (1998)Google Scholar
  15. 15.
    Iordache, M.D., Bioucas-Dias, J., Plaza, A.: Sparse unmixing of hyperspectral data. IEEE Trans. Geosci. Remote Sens. 49(6), 2014–2039 (2011)CrossRefGoogle Scholar
  16. 16.
    Kawakami, R., Wright, J., Tai, Y.W., Matsushita, Y., Ben-Ezra, M., Ikeuchi, K.: High-resolution hyperspectral imaging via matrix factorization. In: IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pp. 2329–2336 (2011)Google Scholar
  17. 17.
    Keshava, N., Mustard, J.F.: Spectral unmixing. IEEE Signal Process. Mag. 19(1), 44–57 (2002)CrossRefGoogle Scholar
  18. 18.
    Khan, Z., Shafait, F., Mian, A.: Hyperspectral imaging for ink mismatch detection. In: Int. Conf. on Document Analysis and Recognition (ICDAR), p. 877 (2013)Google Scholar
  19. 19.
    Kopf, J., Cohen, M.F., Lischinski, D., Uyttendaele, M.: Joint bilateral upsampling. ACM Trans. Graph. 26(3) (July 2007)Google Scholar
  20. 20.
    Koutsias, N., Karteris, M., Chuvieco, E.: The use of intensity hue saturation transformation of Landsat 5 Thematic Mapper data for burned land mapping. Photogram. Eng. Remote Sens. 66(7), 829–839 (2000)Google Scholar
  21. 21.
    Mairal, J., Bach, F., Ponce, J., Sapiro, G.: Online dictionary learning for sparse coding. In: Int. Conf. on Machine Learning, ICML 2009, pp. 689–696 (2009)Google Scholar
  22. 22.
    Minghelli-Roman, A., Polidori, L., Mathieu-Blanc, S., Loubersac, L., Cauneau, F.: Spatial resolution improvement by merging MERIS-ETM images for coastal water monitoring. IEEE Geosci. Remote Sens. Lett. 3(2), 227–231 (2006)CrossRefGoogle Scholar
  23. 23.
    Nguyen, H.V., Banerjee, A., Chellappa, R.: Tracking via object reflectance using a hyperspectral video camera. In: IEEE Conf. on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 44–51 (2010)Google Scholar
  24. 24.
    Olshausen, B.A., Fieldt, D.J.: Sparse coding with an overcomplete basis set: a strategy employed by v1. Vision Research 37, 3311–3325 (1997)CrossRefGoogle Scholar
  25. 25.
    Tarabalka, Y., Chanussot, J., Benediktsson, J.A.: Segmentation and classification of hyperspectral images using minimum spanning forest grown from automatically selected markers. IEEE Trans. Syst., Man, Cybern., Syst. 40(5), 1267–1279 (2010)CrossRefGoogle Scholar
  26. 26.
    Tropp, J., Gilbert, A.: Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans. Inf. Theory 53(12), 4655–4666 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  27. 27.
    Tropp, J.A.: Algorithms for simultaneous sparse approximation. part ii: Convex relaxation. Signal Processing 86(3), 589–602 (2006)zbMATHMathSciNetGoogle Scholar
  28. 28.
    Tropp, J.A., Gilbert, A.C., Strauss, M.J.: Algorithms for simultaneous sparse approximation. part i: Greedy pursuit. Signal Processing 86(3), 572–588 (2006)CrossRefzbMATHGoogle Scholar
  29. 29.
    Uzair, M., Mahmood, A., Mian, A.: Hyperspectral face recognition using 3D-DCT and partial least squares. In: British Machine Vision Conf (BMVC), pp. 57.1–57.10 (2013)Google Scholar
  30. 30.
    Wang, J., Kwon, S., Shim, B.: Generalized orthogonal matching pursuit. IEEE Trans. Signal Process. 60(12), 6202–6216 (2012)CrossRefMathSciNetGoogle Scholar
  31. 31.
    Wang, Z., Ziou, D., Armenakis, C., Li, D., Li, Q.: A comparative analysis of image fusion methods. IEEE Trans. Geosci. Remote Sens. 43(6), 1391–1402 (2005)CrossRefGoogle Scholar
  32. 32.
    Wycoff, E., Chan, T.H., Jia, K., Ma, W.K., Ma, Y.: A non-negative sparse promoting algorithm for high resolution hyperspectral imaging. In: IEEE Int. Conf. Acoustics, Speech and Signal Processing (ICASSP), pp. 1409–1413 (2013)Google Scholar
  33. 33.
    Yasuma, F., Mitsunaga, T., Iso, D., Nayar, S.: Generalized Assorted Pixel Camera: Post-Capture Control of Resolution, Dynamic Range and Spectrum. Tech. rep., Department of Computer Science, Columbia University CUCS-061-08 (November 2008)Google Scholar
  34. 34.
    Yokoya, N., Yairi, T., Iwasaki, A.: Coupled nonnegative matrix factorization unmixing for hyperspectral and multispectral data fusion. IEEE Trans. Geosci. Remote Sens. 50(2), 528–537 (2012)CrossRefGoogle Scholar
  35. 35.
    Zhukov, B., Oertel, D., Lanzl, F., Reinhackel, G.: Unmixing-based multisensor multiresolution image fusion. IEEE Trans. Geosci. Remote Sens. 37(3), 1212–1226 (1999)CrossRefGoogle Scholar
  36. 36.
    Zurita-Milla, R., Clevers, J.G., Schaepman, M.E.: Unmixing-based Landsat TM and MERIS FR data fusion. IEEE Trans. Geosci. Remote Sens. 5(3), 453–457 (2008)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Naveed Akhtar
    • 1
  • Faisal Shafait
    • 1
  • Ajmal Mian
    • 1
  1. 1.School of Computer Science and Software EngineeringThe University of Western AustraliaCrawleyUSA

Personalised recommendations